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1 Introduction 

Before its 2nd Wave of Experiments [1], project SoftFIRE [2] has undergone a major change in it 
experimenter enablement technologies. Based on the feedback that the project has received 
from its previous set of experimenters in its 1st Wave of Experiments [3], the project decided to 
develop a modular and extensible middleware [4], which abstracts the complexity of 
underlying open-source software, i.e. the infrastructure controllers. This has made it possible 
to develop specialised software manager modules, each responsible for a certain group of 
functions, e.g. software-defined networking (SDN) [5], network functions virtualisation (NFV) 
[6], security enablement [7], physical device reservation [8], and experiment monitoring [9]. 
With the gained knowledge and experience from the 1st Wave of Experiments, and thanks to 
its more flexible and easy-to-use experimenter manager middleware, the Project was able to 
support 12 experiments during its 2nd Wave.  

In this white paper, the experiments that were successfully deployed on the SoftFIRE platform 
during its 2nd Wave of Experiments are briefly presented. In doing so, the intention is to 
present what has been achieved by experimenters on the platform, and the types of NFV 
[10][11] and SDN [12] experiments that were executed on the platform. These selected 
experiments are: 

 Cost-efficient Centrality-based VNF Placement and chaining algorithm (CCVP), 

 L7-aware Open Virtual Switch supporting programmable network functionalities 

(AVALON), 

 Performance of Software-Defined Wireless Virtual Reality Gaming on SoftFIRE (SWVR), 

 Intelligent resource allocation for 5G cloud environments (MODIO), 

 Adaptive Video streaming with Software Defined Networking (AVISSOS), 

 Dynamic WAN interconnection for multiple NFVI-PoP locations (DEMI), 

 IntelligEnt MoNitoring oF NetwORking ServiCEs (Enforce), 

 Smart City data management with scalable privacy and security based on distributed 

access networks via Cellular technology and scalable data storage in SDN-based data 

centres (Privacity), 

 Service Mobility & Policy Management extension (Inmarsat), 

 NFV-Shield: A Scalable Intrusion Detection Framework for Network Function 

Virtualization Ecosystems (NFV-Shield), 

 5G mobile backhaul Network as a Service (5gNaaS), 
 Drone based dynamic QoS and fault tolerance in the context of high volume, real time 

computation in harsh environments (Aerial Insights). 

The white paper presents summaries of the architecture, experimentation, and contributions 
of this set of experiments. Each experiment is presented in a separate section below. 
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2 CCVP - Cost-efficient Centrality-based VNF Placement 

Algorithm on the SoftFIRE Platform  

Virtual Network Function (VNF) chain placement on a virtualisation platform effects customer 

quality of experience in a network service and cost of operation for the provider. There are 

several cost items in the total deployment cost for a VNF: instance license, site (platform) 

license, and virtual resource usage (computation and communications), to name a few. The 

publication [13] by Institut mines Telecom [14] considers these individual cost items and 

provides a model for total cost evaluation in VNF chains. This work, called the Cost-efficient 

Centrality-based VNF Placement and chaining algorithm (CCVP) [13] has a model that takes 

into account any possible variations in cost weights for different items under different 

deployment environments. The objective of CCVP is to find the optimal number, location, and 

chaining strategy of a set of VNFs in such a manner that the provider cost is minimized. The 

experimenters from Institut mines Telecom aimed to evaluate this cost model on a real 

testbed, i.e. the SoftFIRE platform. With the tests on the SoftFIRE platform, the experimenter 

aimed to check how the previously obtained simulation results [13] compare with results 

obtained from a testbed deployment. Main evaluation metrics were deployment cost and 

latency. 

The deployment on the SoftFIRE testbed involved four 

component testbeds, as highlighted in Figure 1.  

There were two types of cost items considered: Compute 

and communication. Compute costs were assigned to 

different testbeds according to the Azure cost model [15].  

The VNF instance flavour on OpenStack [16] consumed 1 

virtual CPU (vCPU) and 2G virtual RAM (vRAM). The 

following compute costs were assigned per instance per 

month in Azure: 

ADS = $30.50, Surrey (UK) = $37.20,  

Fokus (Germany): $34.97, and Ericsson = $30.50 . 

Communication cost was taken as the sum of the bandwidth used by a VNF chain in the 

network. Outbound data cost for each Gb per month between testbeds was considered in the 

Azure model, whereas the traffic cost inside a testbed was considered to be free [15]. On the 

other hand, there was a VNF license cost of $1250 involved for each VNF deployed.  

On each testbed, the total allocated capacity for this experiment was 2 vCPU and 4G RAM; and 

each VNF required 1 vCPU and 2G RAM. Data traffic was generated from a server VNF to a 

client VNF, which were deployed via the SoftFIRE Experiment Manager [17]. In addition, some 

Figure 1. The specific SoftFIRE 

component testbeds used by the CCVP 

experiment. 
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VNFs for determining the “quality” of communication by monitoring the data traffic flows were 

deployed (i.e. a Zabbix [18] server and agents as VNFs). 

The experiment evaluated two cases in each of its experimentation scenarios. Case 1 involved 

minimum number of instances, which was a strategy to reduce total computation and 

deployment license costs. The instance was a firewall (FW) VNF running on a VM. On a setup 

with three testbeds, this corresponds to a single VNF deployment on one of the testbeds. Case 

2 involved multiple VNFs of the same type, i.e. one per each target testbed, which is a strategy 

to reduce end-to-end latency. Although deploying multiple instances decreases the 

communication cost (i.e. time delay), it also increases the computation and license costs. 

Hence, the experimenter aimed to study this trade-off on a real testbed environment. 

2.2 VNF chains 

To establish a VNF chain, the experimenter defined multiple networks, where a VNF in the 

middle of two others had two ports, one per each network. However, the experimenter 

observed that intermediary VNFs did not pass packets on reverse paths. As a solution, allowed 

address pairs were added. Chaining was enabled by IP forwarding rules in VNFs, with two sets 

of rules for intra-testbed and inter-testbed traffic flows. 

2.2.1. Intra-testbed using routing rules  
To forward traffic between two VNFs in a chain in the same testbed, a rule in one VNF is set to 

send traffic to the destination point via the other VNF. 

2.2.2. Inter-testbed with using Netfilter  
The Linux OS has a packet filter framework called netfilter [19]. This framework enables a Linux 

machine with an appropriate number of network cards (interfaces) to become a router 

capable of network address translation (NAT). Using the iptables utility, complex rules were 

created for packet modification and filtering.  

Two scenarios were tested on the SoftFIRE platform:  

 Scenario 1: Fokus [20] and Surrey [21] testbeds were used in the experiments. Each 

testbed has a client-server VNF pair, and data traffic is from the server VNF to the client 

VNF of that testbed. This scenario involves a Firewall (FW) VNF, which is placed along the 

route of data traffic, i.e. it inspects traffic flows in the chain. Two traffic flows, namely T1 

and T2,  were used in experiments, with T2 carrying three times the traffic carried by T1: 

Traffic 1 (T1): Fokus  Fokus 

Traffic 2 (T2): Surrey  Surrey 

In this scenario, two cases were tested, as 

follows: 

Case 1: One FW instance per testbed was 

deployed, and inspects the traffic between the server and the client. This is shown in Figure 2. 

Figure 2. Scenario 1 (Case 1): Single firewall (FW) 

instance for two testbeds. 
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Case 2: There is a single FW instance 

deployed on one of the testbeds, which checks 

the data traffic flows of both testbeds. This is 

shown in Figure 3. 

In Case 2, the total delay for T1 is around 0.194 

seconds less than that in Case 1, while the 

total cost of the T1 and T2 is $1174.72 more. CCVP selects Case 2 (cheaper option).  

 Scenario 2: Placement of a chain of two types of VNFs, with traffic between three testbeds. 

The chain consisted of two VNFs: a Firewall VNF and a QoS VNF. Traffic flows between ADS, 

Ericsson, and Fokus testbeds were generated. This scenario was also specific to a case where 

the data load was not high. Furthermore, traffic T2 carried 3 times the load as T1. 

Traffic 1: ADS  Ericsson, 

Traffic 2: ADS  Fokus. 

There were two cases tested in this scenario: 

Case 1: Both traffic flows pass through the 

same single QoS inspection VNF which was 

deployed on the Fokus testbed. This is shown in 

Figure 4. 

Case 2: Separate QoS VNFs were deployed in 

Ericsson and Fokus testbeds, each of which 

inspected the traffic on the corresponding 

testbed. This is shown in Figure 5. 

 

A total amount of 10 MB was sent for T1 in both 

cases, and Case 1 had 40 seconds more delay, 

whereas the cost for the operator was $1287 less. 

Based on this, CCVP selected Case 1 as the more 

favourable option. 

In general, the algorithm favours the cheaper 

option; however when the data amount is higher, 

communication costs become more favourable, 

which triggers CCVP to choose deployment of multiple VNFs.  

2.3 Conclusion 

The objective of the CCVP experiment was to find the optimal number of VNFs along with their 
locations and chaining among them in such a way to minimise the overall cost. It was shown 

Figure 3. Scenario 1 (Case 2): Dedicated firewall (FW) 

instance per testbed. 

Figure 4. Scenario 2, Case 1: Single QoS VNF. 

Figure 5. Scenario 2, Case 2: Dedicated QoS VNF 

per testbed. 
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that while deploying more instances can decrease time delay in delivering content, it may also 
lead to increase in total cost, due to license and computational costs incurred to network 

operators. In high load conditions though, communication cost is the overwhelming factor. 

3 Avalon 

The experiment Avalon aimed at identifying traffic patterns in the virtualisation platform 
asynchronously, without adversely affecting system performance. To achieve this goal, the 
experimenters implemented dynamic service function chains that perform packet inspection in 
Layer 7, rather than Layer 2 to 4. The key technology was a modified version of Open Virtual 
Switch (OVS) [22] implementation, which made it possible to generate a set of NFV services 
that form an interconnected series of VNFs. The sequence of OVS VNFs where programmed to 
perform traffic forwarding and steering. By identifying and classifying traffic based on 
application criteria, an SDN controller can program these OVS elements to treat traffic suitably. 

For the 2nd Wave of Experiments on the SoftFIRE platform, the experimenters from the 
company  Eight Bells Ltd. [23] designed and developed different types of new L7-aware OVS 
VNFs: (a) a Classifier which can classify traffic flows, (b) a Firewall, and (c) a Rate Limiter (RL) 
providing QoS support mechanism, and (d) an Enabler for programmable L7 Service Chaining. 

3.2 OVS as a firewall or QoS enforcer 

Two simple configurations of L7-aware OVS were developed: The first allows OVS to perform 
like a L7 Firewall and the second can perform QoS enforcement per application, i.e. a rate 
limiter which can limit the bandwidth of specific traffic flows tagged by the Classifier.  

3.3 OVS for programmable L7 service chains 

Secondly, the experimenters designed an OVS which was programmable to be a VNF that can 
be part of a L7 Service Function Chain (SFC) [24][25], by means of adding an interface that can 
interact with an external Deep Packet Inspection (DPI) VNF.  

The experiments with this type of OVS 
had the aim to demonstrate the 
benefits of dynamic programmable 
function chaining. With an intelligent 
traffic steering mechanism, it was 
possible to choose the best number 
and sequence (chain) of service 
functions. This dynamic SFC is based on 
L7 inspection (Layer 7), i.e. traffic 
identification and classification at the 
application layer.  

The choice to host DPI functionality 
externally from OVS inside a VNF (and Figure 6. AVALON service chains. 
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not as an embedded flow classifier in OVS) was carefully selected due to the following reasons:  

✓ The DPI VNF can remain as a self-contained and scalable VNF that can be used on 

demand.  

✓ The OVS is in charge of only traffic steering, in an efficient and predictable way.  

By design, the new L7 OVS targets at real-time packet processing and with the support of DPDK 
packet processing libraries, and it can fulfil real-time carrier-grade switching requirements of 
telecom operators. 

In the experiments, Avalon provided SFC composed of these different types of VNFs. The OVS 
VNFs were applied differently to different application traffic flows: 

 SSL traffic goes through DPI, Firewall, and Rate Limiter VNFs, 

 BitTorrent traffic goes through DPI and Rate Limiter VNF, 

 FTP, as a use case of general application data, goes through DPI and Firewall VNFs. 

Traffic was tagged using the type of service (ToS) header. The DPI engine was based on the 
open source project nDPI [26]. This component is able to detect HTTP/FTP/BitTorrent traffic 
even if it is directed to a different port than the default port. 

Avalon experimenters performed two types of 
experiments as below. In the first 
configuration, firewall capabilities that can be 
developed with OVS are demonstrated. This is 
shown in Figure 7. Upon detecting connections 
on TCP port 22122, DPI informs Flow Creator 
(SDN controller), which then programs the 
Classifier so that packets on that connection 
are dropped. 

 

In the second configuration, Avalon 
demonstrated QoS enforcement capabilities 
per application. The experiment involved 
permitting FTP traffic to be forwarded at full 
speed whereas HTTP traffic was limited to a 
small rate (0.5 Mbps) to allow the receiver to 
verify that traffic limiting functionality is in 
place. Hence, different traffic types were 
treated differently based on DPI analysis. This 
is illustrated in Figure 8. 

Figure 7. AVALON experiment configuration 1: Allow 

connections to TCP port 22 only. 

Figure 8. Rate limiting experiment. 
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In the third configuration in Avalon, specific 
traffic flows were steered according to Service 
Chain configuration to relevant VNFs. This is 
shown in Figure 9. A client VM initiated HTTPS 
requests towards port 443 using the wget 
application. nDPI libraries detected HTTPS traffic 
and identified it as SSL flows. Flow provisioner 
software provisioned OVSbr1 and OVSbr2 
bridges with flows containing the client IP 
address, the server IP address, and the server 
TCP port to be processed by a specific flow table, 
which contained the information to mark all 
packets with ToS value 0x40, and then forwarded 
them via OVSbr3 Bridge to the Firewall VNF. The 

configuration in the Firewall VNF applied a security policy for ToS 0x40 and then forwarded 
traffic towards to the Rate Limiter VNF without modifying the ToS value in the IP header. 
Finally, the Rate Limiter VNF applied a maximum rate value matching its configuration for 0x40 
value and sent traffic to the Traffic Classifier VNF to be delivered to the Apache server. 

The final configuration of the Avalon experiment was about Dynamic Service Flow provisioning 
of traffic patterns that are not so easily detected or cannot be classified with typical Layer3 or 
Layer4 tuples. This is illustrated in Figure 10. Peer-to-peer traffic was established over random 
TCP and UDP ports which cannot be detected by monitoring well-known ports used by 
standard TCP/IP protocols. To address this, the experimenter steered BitTorrent traffic to 
Traffic Limiter VNF, and FTP traffic to the Firewall VNF. 

 

Figure 10. Dynamic service flow provisioning with Avalon. 

3.4 Conclusion 

The Avalon project has provided a number of conclusive remarks. First, traffic classification 
with DPI should be the first operation in a service chain to classify traffic flows according to 
specified/required criteria. Any flow that do not match a classification scheme should not be 

Figure 9. Firewall and Rate Limiter SFC in 

AVALON. 
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delayed and must be passed without modification. Secondly, OVS must be operated in kernel 
space to reduce delay, and must be operated by an SDN controller for dynamic traffic steering. 
Third, automated operations must be favoured so as to minimise service interruption in cloud 
services. Finally, service decomposition to multiple VMs is favourable for flexibility and 
dynamicity, despite a single VM might be sufficient capacity-wise.  

4 Performance of Software-defined Wireless Virtual 

Reality Gaming on SoftFIRE (SWVR)  

Real-time Virtual Reality (VR) gaming has become a promising but challenging technology for 
the next generation of multimedia systems. Different VR headsets have been so far developed 
and offered in the market, such as SONY PlayStation VR, Facebook Oculus RIFT, HTC Vive, and 
so on. To provide high quality VR gaming experience, off-the-shelf VR headsets usually demand 
a wired connection due to the requirement for high bandwidth. The controllers are powerful 
gaming units, such as Personal Computer (PC) or a custom gaming controller (e.g. PlayStation). 
In summary, VR applications have high hardware and connection bandwidth requirements, 
which is often a limitation for mobility scenarios.  

To overcome the above-mentioned issues, the company DozeroTech [27] has developed a 
software backend system that supports wireless VR gaming applications over common wireless 
technologies like, e.g., WiFi, and 4G/5G. Today, there are three typical solutions to make  
wireless based VR gaming applications a reality: 

 Advanced encoding/decoding algorithms, which however may increase user plane 
latency in VR gaming applications,  

 Specialised wireless technologies like WiGig [28], which do not support connectivity to 
4G/5G mobile networks,  

 Interpolation algorithms for image downscaling/upscaling. Specifically, the native 
images of a game are downscaled at the game server side before transmission, while 
the downscaled image can be accordingly upscaled at the game client side. As such, 
the bandwidth usage for data transmission can be significantly reduced. However, the 
higher the image quality requirements are, the more computational complexity the 
algorithm has and the more resources (e.g., memory, CPU) are needed, 

 Using extra information retrieved from multiple images in order to enhance the quality 
of a particular image. However, this solution may lead to higher video processing 
latency, and hence is not suitable for real-time VR gaming scenarios. 

The unique approach pursued by DozeroTech was based on multiple important factors in VR 
gaming scenarios, such as image quality, processing time, cost, portability, and energy 
efficiency. The solution was submitted as a patent application to the Swedish Patent Office. 

The experiment’s main goal on the SoftFIRE testbed was to evaluate the performance of this 
solution in a real 5G virtualisation platform for mobile networking. The image 
downscaling/upscaling method and the VR functionality were integrated in an open-source 
cloud gaming system called GamingAnywhere (GA) [29]. Experimental results showed that the 
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performance of the system well met the KPI verification requirements for Quality of Service 
(QoS) and Quality of Experience (QoE). 

4.2 Architecture 

Figure 11 illustrates the deployment architecture. FOKUS 5G core [30] provided access to the 
virtualisation server to a mobile equipment (Samsung Galaxy S8+), which was running the 

experimenter’s Proxy Server VM that was 
deployed via the SoftFIRE Experiment Manager 
[17]. The VR game server had a wired connection 
to the FOKUS testbed and had connectivity to the 
local virtualisation platform of the SoftFIRE 
network. Hence, the game server had 
communication with the mobile terminal and the 
SWVR proxy server through the SoftFIRE network 
and the FOKUS 5G network base station. The 
SWVR proxy server collected statistical 
information about the communication between 

the game server and the game client. The collected information was used for performance 
analysis.  

4.3 Key performance indicators 

Three key performance indicators (KPIs) were used in the experiments to evaluate the 
effectiveness of the experimentation system, which are as follows: 

4.3.1. Percent loss in image resolution  

The game server downscaled each original image (game frame) generated by the game server 
and streamed it to the client. The game client upscaled the downscaled image for further 
rendering. The key target in this process was that the upscaled image should have the same 
resolution as the original image. Original images that were created by the game server had a 
resolution of 2200 pixels x 1080 pixels. The tolerance level in this KPI was a maximum of 10% 
degradation in received image resolution. 

4.3.2. Round trip time (RTT) 

In this experiment, round trip time in the context of a VR game was essentially considered to 
be the time difference between the instance a user takes a game action (button click, console 
input, etc.) to the game server and the instance some feedback is received on the user’s 
screen. Experiments on the SoftFIRE architecture as defined above showed that average RTT 
was 76.196 ms. This met the experimenter’s requirement of a maximum 120 ms within a 10% 
tolerance margin. 

4.3.3. Structural similarity index  

Structural SIMilarity (SSIM) Index is referred to as a way of evaluating the image quality of a VR 
game video by comparing the upscaled game frame at the client side with the native game 
frame generated at the server side. Using a downscale factor of 0.5, average SSIM was found 

Figure 11. SWVR setup and network topology. 
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to be 0.8801, which met the experimenter’s requirement for an SSIM of 0.8, with a 10% 
tolerance margin. 

5 MODIO - Intelligent resource allocation for 5G cloud 

environments 

State-of-the-art NFVO autoscaling mechanisms are often manually configured. Specifically, 
autoscaling parameters, i.e. NFV scale-in/out and the cooldown period parameters, are 
manually set and do not change over time, irrespective of the incoming client load. This 
approach has important drawbacks. First, in case of a sharp rise in demand for VNFs from the 
clients, it is quite likely for the autoscaler’s fixed step scale-out action to prove insufficient to 
keep up with the high load, leading to SLA violations. Secondly, a sharp drop in demand 
combined with a small scale-in step value and/or high cooldown period causes waste of 
resources and unnecessary power consumption of the telco cloud infrastructure. Third, similar 
scenarios can be outlined in cases of high scale-in or scale-out values being statically 
configured within an autoscaler. All such drawbacks stem from the same underlying problem 
within the autoscaler’s engine: the impedance mismatch between the actual demand and the 
implemented autoscaling policy within the NFVO.  

The “Intelligent resource allocation for 5G cloud environments  experiment” was designed by 
Modio Computing [31]. The experiment implemented and validated a novel computational 
intelligence mechanism, which dynamically determines appropriate values of OpenBaton’s [32] 
scale-in/out parameters1. The mechanism incorporates forecasting algorithms to predict the 
upcoming system load in order to help determine OpenBaton’s autoscaling action parameters.  

The experimenter compared the performance between: 

 The current static auto-scaling mechanism 
in OpenBaton where the autoscaling 
policy’s specific action parameters are 
manually configured  

 The experimenter’s machine-learning 
approach for dynamically generating the 
policy content and submitting the 
resulting policies to OpenBaton. 

5.2 Deployment of the experiment 

on SoftFIRE 

The high-level architecture is depicted in Figure 
12. The prediction engine leveraged Modio’s 
commercial Qiqbus streaming analytics platform 
to predict upcoming resource allocation 

                                                           
1 The work to derive a performant cooldown parameter constitutes ongoing Modio work towards MVP 
development. 

Figure 12. MODIO experiment architecture. 
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adjustment requirements for each active network service. Load forecasts were generated by 
three distinct timeseries prediction algorithms, namely, ARIMA, Holt-Winters, and Recurrent 
Neural Networks (RNN). 

To evaluate each forecasting approach, a number of virtual machines (VMs) were instantiated 
within the FOKUS testbed in order to host the WebRTC service and emulate a telco NFV cloud. 
The client load was generated by a cluster of VMs located in Modio’s private Google cloud 
where multiple WebRTC sessions were launched from Google Chrome processes. All sessions 
were tunnelled through a TURN server to bypass NAT traversal issues. The number and 
duration of the client sessions were handled by Selenium and they were configured by 
experimentation scenario scripts.  

5.3 Experiment scenarios 

Scenario 1: Under- provisioned number of VNFs (scale-out) 

The experimenter first evaluated the performance of SLA guarantees provided by the 
predictive autoscaling approach. An insufficient number of VNFs were initially instantiated at 
FOKUS for serving incoming WebRTC sessions from the Virtual Machines within the Google 
cloud. In scenarios with fast increase and decrease of demand as well as with high-sustained 
load, it was validated that predictive algorithms (ARIMA, Hold Winters, RNN) improved the 
performance of the standard autoscaler of OpenBaton which does not currently use predictive 
models and performs scale-out operations with fixed-step scale-out autoscaling policies. The 
effect of our approach is summarised in Table I below. 

Table 1. Ratio of sessions per VMs in patterns including fast increase and decrease of demand and high-

sustained load 

Algorithm 

Measured metrics  

Active VM 

time 

(seconds) 

SLA-Conforming 

Session Time 

(seconds) 

Ratio (Sessions/VM) 

ARIMA 544 405 0.744485294 

Holt Winters 259 320 1.235521236 

RNN 365 240 0.657534247 

Standard 153 38 0.248366013 

 
However, in other experiments with different traffic patterns, OpenBaton’s standard 
autoscaler exhibited slightly worse performance than its predictive counterparts. This is due to 
the slow start-up time of OpenStack VMs during the scale-out phase. Specifically, despite the 
fact that predictive algorithms are able to capture the pattern of the load increase, the 
significant time taken by OpenStack to allocate additional VMs (typically ~120 secs) hindered 
the potential benefits of Modio’s approach. This is a lesson learned and is being addressed by 
employing containerized environments instead of virtual machines.    

Scenario 2: Over-provisioned number of VNFs (scale-in) 

The performance of Modio’s approach against OpenBaton’s default autoscaler was evaluated 
for different over-provisioned states, involving  more VNFs than necessary. One such state was 
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achieved by first increasing the number of WebRTC clients and then reducing their number 
and thus the total load which was received as input to OpenBaton NFVO.  

Figure 13 depicts the performance of an 
indicative experiment that involved over-
provisioning of resources, which used the 
Holt-Winters algorithm. During the scale-
in phase, the figure demonstrates Holt-
Winter’s capability to decommission 
WebRTC VMs compared to the default 
autoscaler of OpenBaton. This is due to 
the fact that the machine learning 
approach is able to quickly detect the 
sudden load decrease and trigger 
appropriate scale-in actions. This 
capability cannot be offered by static 
autoscaling mechanisms. It is important 

to note that, in this experiment, the default autoscaler spent 4880 CPU-seconds during the 
over-provisioning phase, while the Holt-Winters autoscaler within the autoscaling engine only 
occupied 2550 CPU-seconds, resulting in an energy saving of approximately 48% for the 
provider hosting the WebRTC 5G service. Analogous energy saving outcomes have been 
observed when using different forecasting approaches. 

5.4 Conclusion 

For the over-provisioned scenario, the experiment clearly led to the conclusion that the most 
effective method in terms of meeting SLA requirements of WebRTC clients was the ARIMA 

algorithm, as presented in Figure 
142. Furthermore, Holt-Winters and 
RNN both outperformed the default 
OpenBaton autoscaler, being able 
to scale-in resources more 
effectively. Moreover all validated 
forecasting techniques have 
resulted in  energy savings for the 
NFV cloud provider (emulated by 
FOKUS testbed and OpenBaton) 
since all technqiues have resulted 
that the experiment used less 
resources to serve the input load. A 
video describing Modio’s 

experiment is available on YouTube [33]. Ongoing work is carried out by Modio in order to 
produce a minimum viable product and secure the implementation through filing of a patent.  

                                                           
2KPI 3 in Figure 14 the refers to KPI that measures if the approach outperforms OpenBaton’s default 
autoscaler in terms of guaranteeing the SLA for WebRTC session for over-provisioned use cases. 

Figure 14. KPI3 and energy savings in over provisioned use cases 

Figure 13. Scenario: Over-provisioned number of VMs. 

Comparison of default auto-scaler and Holt Winters. 
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6 Avissos 

Wireless networks, which have stringent resource limitations and fast-changing conditions 
require better architectures and a cross-layer approach to support high-volume and 
bandwidth-intensive applications, like video streaming. The experiment, called Adaptive Video 
streaming with Software Defined Networking, from the company StreamOWL [34] was on 
Quality of Experience (QoE) for video streaming applications. The experiment targeted at 
improving QoE of video streaming users by means of a cross-layer approach that considered 
end-to-end data paths. This adaptive solution considered varying network conditions of video 
clients, and determined optimised routing paths, also taking into account the network’s 
topology and resources. At the application layer, the Dynamic Adaptive Streaming over HTTP 
(DASH) approach enabled seamless adaptation of the video client to current network 
conditions.  

6.2 Architecture 

The experiment is simply illustrated in Figure 15. 
Initially, the video client requested a video from 
the video server, which communicated with an 
SDN controller that monitored network 
conditions (e.g. congestion, delay) to decide 
which media server is more appropriate for 
content delivery to the video client by changing 
the routing path. The routing decision was based 

on optimization of the end-user QoE. The 
SoftFIRE federated testbed provided multiple 

testbeds at different locations, supporting SDN functions and allowing routing adaptation.  

The solution considered (i) network topology, (ii) link capacities, and (iii) the specific QoE 
requirements of each application. The 
path selection process was adaptive to 
changing network conditions, e.g. jitter, 
delay, bandwidth, node/link failure. The 
quality assessment model was based on 
QoE assessment methods of audio-visual 
quality assessment for adaptive 
streaming over HTTP, as described in ITU-
T Recommendation P.1203 [35], which 
has been validated in many different 
network conditions. Performance was 
evaluated for various metrics, such as 

start-up delay, number/frequency of rebuffering events, sustained video bitrate, and objective 
Mean Opinion Score (MOS). 

The experiment setup is illustrated in Figure 16, which includes an HTML5 player (based on the 
YouTube IFrame API) which provides measurements of video resolution, startup delay, number 

Figure 15. Video streaming SDN architecture. 

Figure 16. AVISSOS experiment setup. 
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of re-buffering events and duration. This web page was hosted at the Experimenter’s site, and 
the video was fetched from YouTube.  
 
The setup also included a DASH client which was responsible for downloading the input video 
and controlling the adaptation strategy based on the network conditions of the client. The 
client chose to request segments with lower resolution if it detected a drop in the throughput 
of the previous segments, in order to avoid buffer under-runs which would result in 
interruptions in video playback. The video client was mplayer, since it can operate in a 
headless mode and is a lightweight and robust application which can handle DASH streams. In 
the case of a stand-alone video client, the proprietary “StreamOwl over-the-top (OTT) probe” 
was used, which monitors Internet traffic in a passive and unobtrusive way using Deep Packet 
Inspection (DPI) techniques and evaluating the impact of service parameters and performance 
metrics (e.g. video bitrate, network degradations, type of service, etc.) on user-perceived 
quality.  
 
The algorithm for QoE estimation was based on the ITU-T Recommendation P.1201-PD [36], 
the international standard for quality assessment in IP-based applications. More specifically, 
the probe enabled the monitoring of the following key performance/quality indicators: 

 Audio/video QoE (in terms of MOS), 
 Video startup delay, 
 Video rebuffering/freezing (timestamp+duration of each event), 
 Video quality switches in ABR testing, 
 Segment throughput and bitrate, 
 Segment download time, 
 Number of video representations (analysed by the manifest file), 
 Audio/video quality of each segment, 
 HTTP errors (4xx/5xx messages). 

6.3 Results 

The results of the StreamOWL OTT probe were 
stored locally in the user equipment and 
transferred to a local repository after experiment 
execution. In contrast, the results from the 
embedded HTML5 player for the YouTube test 
were stored directly in the StreamOWL server 
which hosted the web-page, immediately after 
the end of the video playback. 

The other nodes, which are depicted in Figure 15, 
were configured as intermediate nodes 

(switches), so that the traffic could be routed through a specific combination of them to the 
final node which contained the video client. In this respect, it was possible to emulate the links 
between the nodes with the desired level of background traffic (or signal attenuation), to 
modify the throughput and therefore to emulate different levels of traffic bottlenecks.  

Figure 17. Re-buffering events. 
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Experimental results showed improvement of video-related metrics, such as number and 
duration of re-buffering events, and Mean Opinion Score. Sample results are shown in Figure 
17, Figure 18 and Figure 19. 

 
 

7 Demi 

In order to achieve integration of VNFs with wide area network (WAN) connectivity services, 
this experiment called “Dynamic WAN interconnection for multiple NFVI-PoP locations” (DEMI) 
deployed a WAN Infrastructure Connectivity Manager (WICM) on SoftFIRE. WICM was 
particularly targeted at integrating transit VNFs, which account for a large share of the VNFs 
that are candidate to be offered “as-a-Service”.  

7.2 WAN Infrastructure Connectivity Manager (WICM) 

WICM manages the WAN resources in a 
similar way that the Virtualized 
Infrastructure Manager (VIM) manages 
resources within an NFVI Point of 
Presence (PoP) network. It steers data 
traffic whenever a new service is 
instantiated  across  multiple  NFVIs. 
When an NFV services is selected, the 
request is forwarded to the NFVO. 
Through the NFVO, service mapping is 
performed in order to select the 
appropriate NFVI PoP, and connectivity 
from the WICM can be requested. To 

achieve this type of connectivity, WICM steers traffic based on VNF Forwarding Graph 
Descriptor (VNFFGD) rules and network WAN connectivity resources. 

As shown in Figure 20, the NFVO requests the WICM to steer the data traffic so that packets 
pass through a pre-defined sequence of VNFs, located in NFVI-PoPs A and B (Sites A and B, in 
the figure). It should be mentioned that the complexity of the process performed in the 

Figure 18. Re-buffering time. Figure 19. Mean Opinion Score. 

Figure 20. Data traffic steering through WICM. 
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WICM depends merely on (i) the physical and logical locations of VNFs, (ii) the common 
network abstractions used, and (iii) the available network connectivity resources.  

The architecture of DEMI, as shown in Figure 21, 
enables a clean separation between the role of NFVO 
(i.e., resource management, service mapping, and 
NFVI-PoP selection, etc.) and the role of WICM (end-
to-end network connectivity establishment, 
NFVI/WAN integration).  

 WICM API: Provides a REST interface through 
which the NFVO can request  connectivity services, 

WICM Traffic Redirection Services: Retrieves the 
networking graph, translates them  correctly  into  
traffic steering rules that are to be sent to the 
controller.  

WICM Database: The  database  consists of two tables: (1) Connectivity, which keeps the 
location where the information about the underlying infrastructure has to be declared and 
pre-configured. (2) UserClient, which contains information about the source of the data traffic 
and its final destination, i.e. the target. 

The WICM module is composed 
of a set of  functional components: 

• Server: A UDP sender. Sends 
lowercase letters to the Client, 

• Client: A UDP receiver that 
receives the text from the Server, 

• CapVNF: The VNF that 
capitalizes the text intercepting the 
client-server connection, 

• Two OVS instances that are 
controlled by WICM to enforce the 
network service embedding 
between the Client and the Server. 

 

7.3 Deployment on SoftFIRE 

The WICM in this particular deployment was located on an ORION server that had 
connectivity with the rest of the components located on the SoftFIRE testbed. 

DEMI based on connectivity information available to the WICM in relation to the network 
attachment points (switch ports, IPs, mac addresses etc), the quantitative characteristics  of 
the provisioned network links (e.g. latency, capacity etc) and the required end-to-end QoS 
characteristics, was able to create virtual networks and configure the proper rules at  the SDN 

Figure 21. WICM architecture. 

Figure 22. Deployment of DEMI on SoftFIRE. 
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controller (i.e. OpenDaylight [37]) in order to steer  traffic  between  two  end-points through 
multiple NFVI-PoPs. 
 

8 Enforce 

This experiment from University of Thessaly, which was called the IntelligEnt MoNitoring oF 
NetwORking ServiCEs (ENFORCE), was themed on virtual setup boxes (vSTB). The experiment 
involved traffic monitoring and forecasting, to drive VNF scale-in and scale-out operations 
based on the monitoring outcomes. The experiment provided a benchmarking tool and an 
extension to the SoftFIRE framework that monitors virtualized resources and services defined 
for realizing Setup Box (STB) functionalities, called vSTBs. In particular, two parts of a vSTB, i.e. 
the vPVR (virtual Personal Video Recorder) and the aggregation of video streams defined in 
multiple formats were considered.  

The tool simulated iTV service demand, and tested the performance of the platform. The 
monitoring mechanism used by the tool was the basis for configuration or re-configuration 
flags to support efficient scale-in scale-out orchestration decisions. When vSTB traffic was 
predicted to be below a threshold, a scale-in alert was fired. Similarly, when the vSTB traffic 
was predicted to be above a higher threshold, a scale-out alert was triggered.  

Tests on the SoftFIRE platform were performed, adopting multiple data video sources acquired 
by various URIs offering different TV services as well as synthetic traces. Results on the three 
performance metrics, i.e. (i) service start latency, (ii) service availability (percent of time when 
the requested service was available to users), and (iii) fulfillment of storage demand from the 
application (on-demand request for storage space availability) are shown in Table 2. 

Table 2. Results of the ENFORCE experiment. 

OpenStack 
VM Flavour 

Service 
Availability (%) 

Latency 
(ms) 

Storage demand 
fulfillment (%) 

Small 96.89 150.62 86.41 

Medium 92.55 46.80 95.68 

The latency of invoking iTV services was recorded just after the request for invocation of the 
offered services. It was observed that adopting a medium VM flavour reduces the latency due 
to increased virtual resources. 

The storage demand fulfillment was below what was targeted at initially, but close to the pre-
defined goal. It was observed that OpenStack small flavour can support 1000 users but not 
2000 at the same time. Finally, storage demand fulfillment depends on the amount of the 
available storage in the VM at the time of request. It was observed that the higher the storage 
resources are, the higher the rate of fulfillment becomes. The average service availability was 
found to be above the pre-defined goal. 

The results show that the proposed monitoring mechanism can help scale-in or scale-out 
actions to upgrade or downgrade the resources involved in the virtualized environment, by 
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means of modifying the VM flavour where iTV services were deployed. This way, the 
management of the available physical resources were efficiently handled to maximize  
performance and ensure sufficient QoS.   

9 Privacity 

This experiment by the company HOP Ubiquitous [38] was focused on smart city data 
management services, to indirectly improve privacy and security of users by means of 
promoting distributed SDN-based data centres that host data storage for smart city services. 
The experiment in general targets at providing a scalable and trustable deployment of basic 
services such as data storage, where the benefits of IoT and 5G can be sufficiently offered, 
whilst ensuring trust in IoT deployments, by taking advantage of the NFV, SDN, and edge 
computing technologies. 

The PrivaCity experiment was based on a service offered by HOP Ubiquitous for data storage 
over the OMA LwM2M [39] protocol. This protocol is widely extended and supported by 
various platforms, such as ETSI oneM2M [40], and also Future Internet software solutions, 
such as FIWARE [41], thereby making it friendly for multiple SDN/NFV and 5G infrastructure 
providers. The experiment focused on information reporting functionalities of OMA LwM2M, 
i.e. read data, write data, and subscribe to events. The experiment in the SoftFIRE platform 
was based on an OMA LWM2M client-server infrastructure, and involved the following 
components: 

 Standalone HOMARD platform (Cloud side): HOP Ubiquitous provides an IoT device 

management platform, called Homard [42]. This platform supports OMA LWM2M 

connections and is able to connect and share data with LwM2M clients, providing a 

simple and intuitive dashboard where the user can find a playground for data 

visualization and device management. The platform keeps track of the data amount 

received from the LwM2M devices connected to the platform. This web service is 

called Historical Data Cache (HDC), which allows data collection and statistics 

derivation, or application of complex data mining algorithms. This service was used as 

a server in this experiment. 

 Virtual Object - VO (Sensor / IoT side): The experiment included virtual sensor objects, 

which are simple micro-service instances, each connected directly to the IoT OMA 

LwM2M physical device that they are in constant communication with. The VO 

offered a simple API to fetch instant information, and make asynchronous 

observations. 

The experiment focused on data management for this IoT service consisting of multiple VOs 
using SDN. The objective of the experiment was to achieve and showcase scalability and user 
privacy, by keeping the data in the neighbourhood of data clients with edge computing. 
Orchestration and deployment of services at the edge is also beneficial for better Quality of 
Service (QoS).  
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✓ Privacy: Edge deployment of services effectively reduces the number of network hops, 

which reduces the possibility of potential vulnerability points on data paths.  

✓ Scalability is envisioned to be a by-product of NFV services in 5G, which the SoftFIRE 

project provided with its multi-testbed platform running OpenStack. Scalability is 

needed for massive IoT deployments, which are expected in the Smart Cities domain. 

In the experiments, IoT service scalability was tested with SDN, instead of the available 

conventional backbone in the Internet.  

The experiment deployed IoT services in three countries: 
one location where the experimenter facilities is located 
(Spain), and two locations where a SoftFIRE testbed 
resides (Germany and the UK). This is illustrated in 
Figure 23. 

The experimenters expect to exploit the findings as part 
of the 5G deployments during coming two years, when 
SDN and network slicing capabilities will be widely 
available. 

 

 

10 Inmarsat 

In this experiment, the company Inmarsat [43] provided a solution for service mobility and 
policy management extension in the SoftFIRE federated testbed which spans multiple sites 
across Europe. The solution was based on and inspired by the company’s solution for global 
mobility of user equipment.  

Having a dedicated Policy & Mobility Management mechanism (outside the NFVO space) 
provides:  

 interoperability with different NFVO implementations,  

 an entity dedicated in the NFVi architecture that is responsible for complex mobility 

event management,  

 the ability to collect and consume data and events (synchronously or asynchronously) 

from various layers and sources of the infrastructure.  

The experimenter first defined mobility and policy-change events. The provided framework 
consumed messages for mobility events, particularly for mobile equipment, which are 
associated with a defined policy. The company’s infrastructure includes thousands of highly 
mobile customer user equipment that are served by different ground stations.  

In the experiment, the events from a radio access network (RAN) equipment was considered to 
trigger a re-configuration procedure for a provisioned service running as a virtual network 
function (VNF) on the SoftFIRE platform. The experimenter used a policy mechanism to trigger 

Figure 23. Service chain deployment of 

the Privacity experiment. 
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orchestration events by interfacing with the Open Baton NFVO based on the policy assessment 
results. In doing so, the experiment also proved its interoperability with SoftFIRE’s NFVO 
implementation, i.e. Open Baton, and also proved the concept of a dedicated entity in the NFV 
architecture that is responsible for complex mobility event managements.   

The experimenter first tested their solution on 
a local virtualisation environment, which 
included OpenStack and Open Baton. The high-
level setup is illustrated in Figure 24. The setup 
includes the mobility and policy framework 
running on a virtual machine, the local Open 
Baton, and running test VNFs.  A simple firewall 
was selected as a test VNF, whose operation 

was verified by requesting access to a Linux server in the SoftFIRE testbed from an external 
Linux machine.  

Once the solution was verified, 
the test VNFs were deployed on 
the SoftFIRE testbeds. This is 
illustrated in Figure 25. The 
experimenter deployed the 
mobility and policy management 
solution on their local 
environment in a VM, which then 
interacted externally with the 
Open Baton NFVO hosted on the 
SoftFIRE platform. The 
deployment of the test VNFs was 

performed via the SoftFIRE Middleware [4] on the Fokus [20] component testbed of SoftFIRE. 
Once the deployment was validated, the mobility policy was set and then triggered by an 
event generation mechanism. This then demonstrated that the policy was triggered, resulting 
in orchestration events that migrate the service, i.e. the VNF, from one testbed to the other. 
The migration of the service (test VNF) was tested between the Fokus [20] and Ericsson [44] 
testbeds. 

11 NFV-Shield 

This experiment aimed at deploying, integrating, testing, and validating Intrusion Detection 
System (IDS) tools in NFV-based scenarios. Security in VNFs is one of the most sought after 
features, as NFV is expected to be adopted by various industry verticals with the flexibility and 
scalability it can provide. Furthermore, security in virtualisation systems is still a main concern 
for platform providers and customers. As such, this experiment aimed at enabling an 
orchestrated management of an IDS as a VNF that can be employed by other VNFs, such as 
Web Services, IMS (IP Multimedia Subsystem) and 3GPP’s EPC (Evolved Packet Core) 
components. The experiment involved extension of the security functionalities supported by 
Open Baton. 

Figure 24. Inmarsat experiment's high-level setup. 

Figure 25. Test of the mobility and policy management mechanism by 

migration of running services. 
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The deployed IDS VNF, called Shield IDS, was evaluated for its accuracy, which was measured 
as a ratio of identified attacks to all performed attacks, i.e. detection ratio. Table 3 lists the 
types of attacks in the NFV-Shield experiment. 

Table 3. Type of security attacks used in the NFV-Shield experiment. 

Type of attack Description Employed tools 

Scanning Scanning available/open TCP and UDP ports, 
using a port scanner. 

Nmap [45] is employed as a port scanner 
tool. 

Vulnerability 
exploitation 

Exploitation of vulnerabilities in web 
applications, such as cross-site scripting, and 
remote code execution, among others. 

Web application as target, with included 
vulnerabilities. The OWASP ZAP [46] 
application is employed in attack mode. 

System penetration 
(Brute-force ssh 

connections) 

Brute-force attack from existent users (e.g. 
ubuntu, root), though the ssh service. 

Use patator [47] or Ncrack [48] tools 
available in Kali Linux [49]. 

11.2 Attack Scenarios 

11.2.1. Scenario 1: Base attack 

In this scenario, a Shield-IDS VNF was 
deployed on SoftFIRE, and a Kali Linux 
attacker performs security attacks. A 
monitoring node gathered values on CPU 
usage, I/O statistics, etc. The scenario was 
aimed at configuring the IDS to support detection and protection from the envisioned attacks, 
as well as to identify the performance and accuracy of the Shield IDS.  

11.2.2. Scenario 2: Tap as a service  

This is a port mirroring scenario in which the traffic received on port 80 of the web server 
instance was forwarded to the Shield IDS instance, which can then provide active protection. 

From a deployment perspective, 
this scenario also enables the 
capability to dynamically 
configure port mirroring. For 
instance, port mirroring can be 
performed according to instance 
lifecycle (i.e. when instances are 
deployed, provisioned or 

deleted). 

 

11.2.3. Scenario 3: Port forwarding at target VNF 

The Distributed IDS analysis required Shield IDS agents to be deployed in each instance that 
needs to be secured. The Shield IDS agents performed analysis of received information, 
according to the rules that can be configured for the service(s) running in the VNF instance to 

Figure 27. Port mirroring scenario in the NFV-Shield experiment. 

Figure 26. The base attack scenario in the NFV Shield 

experiment 
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be secured. The results were then sent to the Shield IDS instance for aggregation and for 
integrated security management. Despite the granular configuration of this approach, where 
rules can be customised according to the service, this approach has the disadvantage of having 
a high performance impact, i.e. CPU, memory, and storage resources are required for real-time 
analysis of traffic.  

On the other hand, the Port Forwarding approach mimics the Tap as a Service scenario in 
Section 11.2.2, with the difference that forwarding was performed at instance level and not at 
infrastructure level. For instance, in Linux based instances, iptables [50] can be configured to 

“duplicate” the received traffic and to 
send it to the Shield IDS. An immediate 
advantage of this approach is the 
reduced impact on the protected 
instances in terms of resource usage (i.e. 
storage resource is not required). 
Nonetheless, unlike the Tap as a Service 
scenario, port forwarding at instance 
level is not very scalable and cannot 

flexibly manage security policies. For instance, all instances that need to be protected needed 
to be modified. 

12 5GNaaS 

3GPP 5G network system architecture [51] has defined the User Plane Function (UPF) as a 
flexible software component that can be readily deployed and programmed from the control 
plane of the mobile packet core network. The 5G Network as a Service (5GNaaS) experiment 
was focused on evaluating the deployment of the UPF at the network edge, to provide a local 
breakout point north of off-the-shelf LTE eNodeB equipment. This edge UPF component was 
deployed on an SDN switch between an eNodeB and the virtualised packet core running on the 
SoftFIRE platform.  

The experiment ran two separate VMs, each including a different type of network slice. The 
first VM included both control plane and user plane parts of an LTE network. This slice had a 

dedicated Femto cell equipment connected to it on a dedicated 
PLMN ID. The second slice had a separate LTE network core on 
another PLMN, including only its control plane; as the user plane of 
this second LTE network was deployed on a physical server on the 
path in between a second Femto cell and this second VM. This 
second LTE network was deployed to demonstrate the User Plane 

Function (UPF) at the network edge, of the newly introduced 5G 
system architecture. The UPF in this experiment consisted of the 

entire SGW and PGW, retaining the UP and CP parts as in LTE, yet was deployed at the network 
edge as a proof-of-concept demonstration of UPF deployment to support MEC applications. 

In addition to showcasing deployment of custom mobile network core slices, either as CP-only 
or CP and UP combined, the experiment also included Software Defined Networking (SDN) 

Figure 28. Port forwarding at target VNF instance. 

Figure 29. 5GNaaS SDN 

hardware switch board. 
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functionality, identifying traffic flows based on PLMN IDs, which was needed to program an 
Open Virtual Switch (OVS) [22] that ran at the same server where the edge UPF was located, so 
that traffic redirection could be performed to this edge UPF. 

Throughput and latency performance on the user plane was observed and compared between 
two scenarios: (i) Edge UPF on edge SDN switch and virtual core on the SoftFIRE platform, and 
(ii) virtual UPF and virtual core both on the SoftFIRE platform. The separate virtual cores 
running for each scenario were separate network slices running in parallel. Performance tests 
were carried out on Android mobiles towards an Internet server. 

13 Aerial Insights 

Due to the growing demand for connectivity across different types of networks and 
equipment, which is particularly expected when 5G mobile networks are rolled out, enabler 
technologies, such as drones, have now been equipped with communication equipment that 
would enable their connectivity to existing terrestrial networks. In view of this, the company 
Aerial Insights [52], which is a data analytics company with focus in the drone industry, 
designed and deployed an experiment on the SoftFIRE platform to test their visual data 
processing algorithms in a virtualisation environment, and to leverage industrial standards, 
such as TOSCA and ETSI NFV MANO [53], in use of virtualised drone data processing 
applications. The experiment involved processing raw images collected by drones dynamically. 
Specifically, the experiment tested image processing algorithms that build aerial maps from 
raw images and provided intelligent map streaming based on dynamic network conditions, 
whilst ensuring uninterrupted user experience.  

The experiment on the SoftFIRE platform focused on near real-time map previews, with an aim 
to provide uninterrupted pre-computed map visualisation, while maintaining perceived QoS. 
Towards this, the experimenter first performed an accurate configuration of their software 
based on testbed conditions so that an automatic provisioning of (i) computing instances, 
(ii) the connectivity between the instances, and (iii) an accurate model of the customers 
operating in the field, are achieved. Then, multiple users that consume the map data are 
simulated in the testbed environment. These two steps enabled real-time test of the 
experimenter’s algorithm.  

Two types of users were modelled: (i) third party developers accessing the public APIs , 
and (ii) human users that connect to the system using a browser. Mimicking the user 
behaviour involved downloading two kinds of images: map tiles, which are similar to the 
ones that are consumed in online services like Google Maps, and high resolution maps, 
which are useful for batch processing on the customer premises. 

The experiment had a modular architecture in which processing, persistent storage, and APIs 
and user interfaces were mapped to individual components. The processing components were 
based on a master-slave scheme in which workers can be added on demand. Most of the 
components were scalable by design, i.e. new instances of a given service can be replicated, 
booted, and can provide machine level parallel execution of individual requests. Most requests 
were atomic and stateless by design (except for the permanent storage used to “remember” the 
results), so they can be processed by containers. Several container instances of the frontend 
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and public APIs could run in parallel so the load could be shared. They were hidden behind 
an nginx [54] server that acted as a reverse proxy and load balancer. 

Each instance was found to be capable of responding to requests from several hundreds of 
users, which in part was due to the fact that the patterns of usage were more intensive on the 
client side (browser downloading and rendering web pages) than on the Internet-facing 
servers (software accessing the APIs, composing web pages and delivering them to the 
customers). Those servers were heavily optimized to use caching. In the case of public APIs, 
the experimenter demonstrated that each server could sustain good performance for several 
thousand users, and peaks of traffic associated to more than 8000 simultaneous users. The 
experimenter performed an extensive set of tests, each time simulating a different number of 
users on the platform, which included functionality, performance, and network impairment 
tests. 

This experiment exposed the benefits of virtualization for network and computing resources. 
The experiment execution was consistent and reproducible, and the experimenter could 
simulate different loads, synthetic customer locations, and network capabilities.  

 

14 Concluding Remarks 

Various experiments were executed on the federated virtualisation testbed provided by 
SoftFIRE. This white paper presents the experiments that deployed NFV and SDN solutions on 
the SoftFIRE platform during its 2nd Wave of Experiments. 

The newly developed SoftFIRE Middleware helped experimenters define different types of 
experiments, each provided by the platform as virtualised resources. Thanks to its Middleware, 
the project supported many more experiments during its 2nd Wave. The Project’s main 
achievement during this experimentation wave is hence a new and modular middleware, 
enabling services for various 5G applications. SMEs and academic organisations benefitted 
from the SoftFIRE platform, by testing their solutions in a virtualised test environment. The 
white paper presents all these applications and solutions, which are examples of near-future 
virtualised services that the industry and the technology market will benefit from. 
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List of Acronyms and Abbreviations 

Acronym Meaning 

3GPP Third Generation Partnership Project 

5G Fifth Generation Mobile Network 

ADS Assembly Data System 

API Application Programming Interface 

CP Control Plane 

CPU Central Processing Unit 

DPDK Data Plane Development Kit 

DPI Deep Packet Inspection 

EPC Evolved Packet Core 

ETSI European Telecommunications Standards Institute 

EU European Union 

FTP File Transfer Protocol 

FW Firewall 

HDC Historical Data Cache 

HTTP Hypertext Transfer Protocol  

HTTPS HTTP Secure 

IDS Intrusion Detection System 

IMS IP Multimedia Subsystem 

IoT Internet of Things 

IP Internet Protocol 

KPI Key Performance Indicator 

LTE Long Term Evolution 

LwM2M Leightweight Machine-to-Machine 

MANO Management and Orchestration 

MOS Mean Opinion Score 

NAT Network Address Translation 

NFV Network Function Virtualisation 

NFVI Network Function Virtualisation Infrastructure 
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NFVO Network Function Virtualisation Orchestrator 

NS Network Service 

ODL OpenDaylight 

OMA Open Mobile Alliance 

OS Operating System 

OTT Over-the-top 

OVS Open Virtual Switch 

PDN Packet Data Network 

PGW PDN Gateway 

PLMN Public Land Mobile Network 

PoP Point of Presence 

QoE Quality of Experience 

QoS Quality of Service 

RAM Random Access Memory 

RAN Radio Access Network 

RNN Recurrent Neural Networks 

RTT Round Trip Time 

SDN Software Defined Network 

SFC Service Function Chaining 

SGW Serving Gateway 

SLA Service Layer Agreement 

SSIM Structural SIMilarity 

SSL Secure Sockets Layer 

STB Setup Box 

TCP Transport Control Protocol 

ToS Type of Services 

TOSCA Topology and Orchestration Specification for Cloud Applications 

UDP User Datagram Protocol 

UP User Plane 

UPF User Plane Function 

VIM Virtual Infrastructure Manager 
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VM Virtual Machine 

VNF Virtual Network Function 

VO Virtual Object 

VR Virtual Reality 

WAN Wide Area Network 
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