

Software Defined Networks and Network Function Virtualisation
Testbed within FIRE+

Second Wave of Experiments on the SoftFIRE
Platform

NFV and SDN Experiments for 5G Networks

April 2008

 SoftFIRE

Table of Contents

Table of Contents .. 2

List of Figures .. 4

List of Tables .. 6

1 Introduction .. 7

2 CCVP - Cost-efficient Centrality-based VNF Placement Algorithm on the SoftFIRE Platform
 8

2.2 VNF chains ... 9

2.2.1. Intra-testbed using routing rules .. 9

2.2.2. Inter-testbed with using Netfilter ... 9

2.3 Conclusion ... 10

3 Avalon .. 11

3.2 OVS as a firewall or QoS enforcer ... 11

3.3 OVS for programmable L7 service chains ... 11

3.4 Conclusion ... 13

4 Performance of Software-defined Wireless Virtual Reality Gaming on SoftFIRE (SWVR) .. 14

4.2 Architecture... 15

4.3 Key performance indicators .. 15

4.3.1. Percent loss in image resolution ... 15

4.3.2. Round trip time (RTT) .. 15

4.3.3. Structural similarity index ... 15

5 MODIO - Intelligent resource allocation for 5G cloud environments 16

5.2 Deployment of the experiment on SoftFIRE ... 16

5.3 Experiment scenarios .. 17

5.4 Conclusion ... 18

6 Avissos ... 19

6.2 Architecture... 19

6.3 Results ... 20

7 Demi .. 21

7.2 WAN Infrastructure Connectivity Manager (WICM) ... 21

7.3 Deployment on SoftFIRE ... 22

 SoftFIRE

8 Enforce .. 23

9 Privacity ... 24

10 Inmarsat .. 25

11 NFV-Shield ... 26

11.2 Attack Scenarios .. 27

11.2.1. Scenario 1: Base attack ... 27

11.2.2. Scenario 2: Tap as a service ... 27

11.2.3. Scenario 3: Port forwarding at target VNF .. 27

12 5GNaaS .. 28

13 Aerial Insights .. 29

14 Concluding Remarks .. 30

Bibliography .. 31

List of Acronyms and Abbreviations .. 33

 SoftFIRE

List of Figures

Figure 1. The specific SoftFIRE component testbeds used by the CCVP experiment. 8

Figure 2. Scenario 1 (Case 1): Single firewall (FW) instance for two testbeds. 9

Figure 3. Scenario 1 (Case 2): Dedicated firewall (FW) instance per testbed. 10

Figure 4. Scenario 2, Case 1: Single QoS VNF. ... 10

Figure 5. Scenario 2, Case 2: Dedicated QoS VNF per testbed. ... 10

Figure 6. AVALON service chains. .. 11

Figure 7. AVALON experiment configuration 1: Allow connections to TCP port 22 only. 12

Figure 8. Rate limiting experiment. .. 12

Figure 9. Firewall and Rate Limiter SFC in AVALON. ... 13

Figure 10. Dynamic service flow provisioning with Avalon. ... 13

Figure 11. SWVR setup and network topology. ... 15

Figure 12. MODIO experiment architecture. .. 16

Figure 13. Scenario: Over-provisioned number of VMs. Comparison of default auto-scaler and

Holt Winters. ... 18

Figure 14. KPI3 and energy savings in over provisioned use cases .. 18

Figure 15. Video streaming SDN architecture. ... 19

Figure 16. AVISSOS experiment setup. ... 19

Figure 17. Re-buffering events. ... 20

Figure 18. Re-buffering time. .. 21

Figure 19. Mean Opinion Score. ... 21

Figure 20. Data traffic steering through WICM. ... 21

Figure 21. WICM architecture. ... 22

Figure 22. Deployment of DEMI on SoftFIRE. .. 22

Figure 23. Service chain deployment of the Privacity experiment. .. 25

Figure 24. Inmarsat experiment's high-level setup. ... 26

Figure 25. Test of the mobility and policy management mechanism by migration of running

services. ... 26

Figure 26. The base attack scenario in the NFV Shield experiment ... 27

Figure 27. Port mirroring scenario in the NFV-Shield experiment. .. 27

Figure 28. Port forwarding at target VNF instance. .. 28

file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787644
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787645
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787646
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787647
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787648
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787649
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787650
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787651
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787652
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787654
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787655
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787656
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787656
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787657
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787658
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787659
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787660
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787661
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787662
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787663
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787664
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787665
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787666
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787667
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787668
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787668
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787669
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787670
file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787671

 SoftFIRE

Figure 29. 5GNaaS SDN hardware switch board. ... 28

file:///C:/Users/serdar/Documents/ProjectWork/SoftFire/Dissemination/White%20Papers/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Platform/White%20Paper%206%20-%20Second%20Wave%20of%20Experiments%20on%20the%20SoftFIRE%20Testbed.docx%23_Toc512787672

 SoftFIRE

List of Tables

Table 1. Ratio of sessions per VMs in patterns including fast increase and decrease of demand

and high-sustained load ... 17

Table 2. Results of the ENFORCE experiment. .. 23

Table 3. Type of security attacks used in the NFV-Shield experiment. 27

 SoftFIRE

1 Introduction

Before its 2nd Wave of Experiments [1], project SoftFIRE [2] has undergone a major change in it
experimenter enablement technologies. Based on the feedback that the project has received
from its previous set of experimenters in its 1st Wave of Experiments [3], the project decided to
develop a modular and extensible middleware [4], which abstracts the complexity of
underlying open-source software, i.e. the infrastructure controllers. This has made it possible
to develop specialised software manager modules, each responsible for a certain group of
functions, e.g. software-defined networking (SDN) [5], network functions virtualisation (NFV)
[6], security enablement [7], physical device reservation [8], and experiment monitoring [9].
With the gained knowledge and experience from the 1st Wave of Experiments, and thanks to
its more flexible and easy-to-use experimenter manager middleware, the Project was able to
support 12 experiments during its 2nd Wave.

In this white paper, the experiments that were successfully deployed on the SoftFIRE platform
during its 2nd Wave of Experiments are briefly presented. In doing so, the intention is to
present what has been achieved by experimenters on the platform, and the types of NFV
[10][11] and SDN [12] experiments that were executed on the platform. These selected
experiments are:

 Cost-efficient Centrality-based VNF Placement and chaining algorithm (CCVP),

 L7-aware Open Virtual Switch supporting programmable network functionalities

(AVALON),

 Performance of Software-Defined Wireless Virtual Reality Gaming on SoftFIRE (SWVR),

 Intelligent resource allocation for 5G cloud environments (MODIO),

 Adaptive Video streaming with Software Defined Networking (AVISSOS),

 Dynamic WAN interconnection for multiple NFVI-PoP locations (DEMI),

 IntelligEnt MoNitoring oF NetwORking ServiCEs (Enforce),

 Smart City data management with scalable privacy and security based on distributed

access networks via Cellular technology and scalable data storage in SDN-based data

centres (Privacity),

 Service Mobility & Policy Management extension (Inmarsat),

 NFV-Shield: A Scalable Intrusion Detection Framework for Network Function

Virtualization Ecosystems (NFV-Shield),

 5G mobile backhaul Network as a Service (5gNaaS),
 Drone based dynamic QoS and fault tolerance in the context of high volume, real time

computation in harsh environments (Aerial Insights).

The white paper presents summaries of the architecture, experimentation, and contributions
of this set of experiments. Each experiment is presented in a separate section below.

 SoftFIRE

2 CCVP - Cost-efficient Centrality-based VNF Placement

Algorithm on the SoftFIRE Platform

Virtual Network Function (VNF) chain placement on a virtualisation platform effects customer

quality of experience in a network service and cost of operation for the provider. There are

several cost items in the total deployment cost for a VNF: instance license, site (platform)

license, and virtual resource usage (computation and communications), to name a few. The

publication [13] by Institut mines Telecom [14] considers these individual cost items and

provides a model for total cost evaluation in VNF chains. This work, called the Cost-efficient

Centrality-based VNF Placement and chaining algorithm (CCVP) [13] has a model that takes

into account any possible variations in cost weights for different items under different

deployment environments. The objective of CCVP is to find the optimal number, location, and

chaining strategy of a set of VNFs in such a manner that the provider cost is minimized. The

experimenters from Institut mines Telecom aimed to evaluate this cost model on a real

testbed, i.e. the SoftFIRE platform. With the tests on the SoftFIRE platform, the experimenter

aimed to check how the previously obtained simulation results [13] compare with results

obtained from a testbed deployment. Main evaluation metrics were deployment cost and

latency.

The deployment on the SoftFIRE testbed involved four

component testbeds, as highlighted in Figure 1.

There were two types of cost items considered: Compute

and communication. Compute costs were assigned to

different testbeds according to the Azure cost model [15].

The VNF instance flavour on OpenStack [16] consumed 1

virtual CPU (vCPU) and 2G virtual RAM (vRAM). The

following compute costs were assigned per instance per

month in Azure:

ADS = $30.50, Surrey (UK) = $37.20,

Fokus (Germany): $34.97, and Ericsson = $30.50 .

Communication cost was taken as the sum of the bandwidth used by a VNF chain in the

network. Outbound data cost for each Gb per month between testbeds was considered in the

Azure model, whereas the traffic cost inside a testbed was considered to be free [15]. On the

other hand, there was a VNF license cost of $1250 involved for each VNF deployed.

On each testbed, the total allocated capacity for this experiment was 2 vCPU and 4G RAM; and

each VNF required 1 vCPU and 2G RAM. Data traffic was generated from a server VNF to a

client VNF, which were deployed via the SoftFIRE Experiment Manager [17]. In addition, some

Figure 1. The specific SoftFIRE

component testbeds used by the CCVP

experiment.

 SoftFIRE

VNFs for determining the “quality” of communication by monitoring the data traffic flows were

deployed (i.e. a Zabbix [18] server and agents as VNFs).

The experiment evaluated two cases in each of its experimentation scenarios. Case 1 involved

minimum number of instances, which was a strategy to reduce total computation and

deployment license costs. The instance was a firewall (FW) VNF running on a VM. On a setup

with three testbeds, this corresponds to a single VNF deployment on one of the testbeds. Case

2 involved multiple VNFs of the same type, i.e. one per each target testbed, which is a strategy

to reduce end-to-end latency. Although deploying multiple instances decreases the

communication cost (i.e. time delay), it also increases the computation and license costs.

Hence, the experimenter aimed to study this trade-off on a real testbed environment.

2.2 VNF chains

To establish a VNF chain, the experimenter defined multiple networks, where a VNF in the

middle of two others had two ports, one per each network. However, the experimenter

observed that intermediary VNFs did not pass packets on reverse paths. As a solution, allowed

address pairs were added. Chaining was enabled by IP forwarding rules in VNFs, with two sets

of rules for intra-testbed and inter-testbed traffic flows.

2.2.1. Intra-testbed using routing rules
To forward traffic between two VNFs in a chain in the same testbed, a rule in one VNF is set to

send traffic to the destination point via the other VNF.

2.2.2. Inter-testbed with using Netfilter
The Linux OS has a packet filter framework called netfilter [19]. This framework enables a Linux

machine with an appropriate number of network cards (interfaces) to become a router

capable of network address translation (NAT). Using the iptables utility, complex rules were

created for packet modification and filtering.

Two scenarios were tested on the SoftFIRE platform:

 Scenario 1: Fokus [20] and Surrey [21] testbeds were used in the experiments. Each

testbed has a client-server VNF pair, and data traffic is from the server VNF to the client

VNF of that testbed. This scenario involves a Firewall (FW) VNF, which is placed along the

route of data traffic, i.e. it inspects traffic flows in the chain. Two traffic flows, namely T1

and T2, were used in experiments, with T2 carrying three times the traffic carried by T1:

Traffic 1 (T1): Fokus  Fokus

Traffic 2 (T2): Surrey  Surrey

In this scenario, two cases were tested, as

follows:

Case 1: One FW instance per testbed was

deployed, and inspects the traffic between the server and the client. This is shown in Figure 2.

Figure 2. Scenario 1 (Case 1): Single firewall (FW)

instance for two testbeds.

 SoftFIRE

Case 2: There is a single FW instance

deployed on one of the testbeds, which checks

the data traffic flows of both testbeds. This is

shown in Figure 3.

In Case 2, the total delay for T1 is around 0.194

seconds less than that in Case 1, while the

total cost of the T1 and T2 is $1174.72 more. CCVP selects Case 2 (cheaper option).

 Scenario 2: Placement of a chain of two types of VNFs, with traffic between three testbeds.

The chain consisted of two VNFs: a Firewall VNF and a QoS VNF. Traffic flows between ADS,

Ericsson, and Fokus testbeds were generated. This scenario was also specific to a case where

the data load was not high. Furthermore, traffic T2 carried 3 times the load as T1.

Traffic 1: ADS  Ericsson,

Traffic 2: ADS  Fokus.

There were two cases tested in this scenario:

Case 1: Both traffic flows pass through the

same single QoS inspection VNF which was

deployed on the Fokus testbed. This is shown in

Figure 4.

Case 2: Separate QoS VNFs were deployed in

Ericsson and Fokus testbeds, each of which

inspected the traffic on the corresponding

testbed. This is shown in Figure 5.

A total amount of 10 MB was sent for T1 in both

cases, and Case 1 had 40 seconds more delay,

whereas the cost for the operator was $1287 less.

Based on this, CCVP selected Case 1 as the more

favourable option.

In general, the algorithm favours the cheaper

option; however when the data amount is higher,

communication costs become more favourable,

which triggers CCVP to choose deployment of multiple VNFs.

2.3 Conclusion

The objective of the CCVP experiment was to find the optimal number of VNFs along with their
locations and chaining among them in such a way to minimise the overall cost. It was shown

Figure 3. Scenario 1 (Case 2): Dedicated firewall (FW)

instance per testbed.

Figure 4. Scenario 2, Case 1: Single QoS VNF.

Figure 5. Scenario 2, Case 2: Dedicated QoS VNF

per testbed.

 SoftFIRE

that while deploying more instances can decrease time delay in delivering content, it may also
lead to increase in total cost, due to license and computational costs incurred to network

operators. In high load conditions though, communication cost is the overwhelming factor.

3 Avalon

The experiment Avalon aimed at identifying traffic patterns in the virtualisation platform
asynchronously, without adversely affecting system performance. To achieve this goal, the
experimenters implemented dynamic service function chains that perform packet inspection in
Layer 7, rather than Layer 2 to 4. The key technology was a modified version of Open Virtual
Switch (OVS) [22] implementation, which made it possible to generate a set of NFV services
that form an interconnected series of VNFs. The sequence of OVS VNFs where programmed to
perform traffic forwarding and steering. By identifying and classifying traffic based on
application criteria, an SDN controller can program these OVS elements to treat traffic suitably.

For the 2nd Wave of Experiments on the SoftFIRE platform, the experimenters from the
company Eight Bells Ltd. [23] designed and developed different types of new L7-aware OVS
VNFs: (a) a Classifier which can classify traffic flows, (b) a Firewall, and (c) a Rate Limiter (RL)
providing QoS support mechanism, and (d) an Enabler for programmable L7 Service Chaining.

3.2 OVS as a firewall or QoS enforcer

Two simple configurations of L7-aware OVS were developed: The first allows OVS to perform
like a L7 Firewall and the second can perform QoS enforcement per application, i.e. a rate
limiter which can limit the bandwidth of specific traffic flows tagged by the Classifier.

3.3 OVS for programmable L7 service chains

Secondly, the experimenters designed an OVS which was programmable to be a VNF that can
be part of a L7 Service Function Chain (SFC) [24][25], by means of adding an interface that can
interact with an external Deep Packet Inspection (DPI) VNF.

The experiments with this type of OVS
had the aim to demonstrate the
benefits of dynamic programmable
function chaining. With an intelligent
traffic steering mechanism, it was
possible to choose the best number
and sequence (chain) of service
functions. This dynamic SFC is based on
L7 inspection (Layer 7), i.e. traffic
identification and classification at the
application layer.

The choice to host DPI functionality
externally from OVS inside a VNF (and Figure 6. AVALON service chains.

 SoftFIRE

not as an embedded flow classifier in OVS) was carefully selected due to the following reasons:

✓ The DPI VNF can remain as a self-contained and scalable VNF that can be used on

demand.

✓ The OVS is in charge of only traffic steering, in an efficient and predictable way.

By design, the new L7 OVS targets at real-time packet processing and with the support of DPDK
packet processing libraries, and it can fulfil real-time carrier-grade switching requirements of
telecom operators.

In the experiments, Avalon provided SFC composed of these different types of VNFs. The OVS
VNFs were applied differently to different application traffic flows:

 SSL traffic goes through DPI, Firewall, and Rate Limiter VNFs,

 BitTorrent traffic goes through DPI and Rate Limiter VNF,

 FTP, as a use case of general application data, goes through DPI and Firewall VNFs.

Traffic was tagged using the type of service (ToS) header. The DPI engine was based on the
open source project nDPI [26]. This component is able to detect HTTP/FTP/BitTorrent traffic
even if it is directed to a different port than the default port.

Avalon experimenters performed two types of
experiments as below. In the first
configuration, firewall capabilities that can be
developed with OVS are demonstrated. This is
shown in Figure 7. Upon detecting connections
on TCP port 22122, DPI informs Flow Creator
(SDN controller), which then programs the
Classifier so that packets on that connection
are dropped.

In the second configuration, Avalon
demonstrated QoS enforcement capabilities
per application. The experiment involved
permitting FTP traffic to be forwarded at full
speed whereas HTTP traffic was limited to a
small rate (0.5 Mbps) to allow the receiver to
verify that traffic limiting functionality is in
place. Hence, different traffic types were
treated differently based on DPI analysis. This
is illustrated in Figure 8.

Figure 7. AVALON experiment configuration 1: Allow

connections to TCP port 22 only.

Figure 8. Rate limiting experiment.

 SoftFIRE

In the third configuration in Avalon, specific
traffic flows were steered according to Service
Chain configuration to relevant VNFs. This is
shown in Figure 9. A client VM initiated HTTPS
requests towards port 443 using the wget
application. nDPI libraries detected HTTPS traffic
and identified it as SSL flows. Flow provisioner
software provisioned OVSbr1 and OVSbr2
bridges with flows containing the client IP
address, the server IP address, and the server
TCP port to be processed by a specific flow table,
which contained the information to mark all
packets with ToS value 0x40, and then forwarded
them via OVSbr3 Bridge to the Firewall VNF. The

configuration in the Firewall VNF applied a security policy for ToS 0x40 and then forwarded
traffic towards to the Rate Limiter VNF without modifying the ToS value in the IP header.
Finally, the Rate Limiter VNF applied a maximum rate value matching its configuration for 0x40
value and sent traffic to the Traffic Classifier VNF to be delivered to the Apache server.

The final configuration of the Avalon experiment was about Dynamic Service Flow provisioning
of traffic patterns that are not so easily detected or cannot be classified with typical Layer3 or
Layer4 tuples. This is illustrated in Figure 10. Peer-to-peer traffic was established over random
TCP and UDP ports which cannot be detected by monitoring well-known ports used by
standard TCP/IP protocols. To address this, the experimenter steered BitTorrent traffic to
Traffic Limiter VNF, and FTP traffic to the Firewall VNF.

Figure 10. Dynamic service flow provisioning with Avalon.

3.4 Conclusion

The Avalon project has provided a number of conclusive remarks. First, traffic classification
with DPI should be the first operation in a service chain to classify traffic flows according to
specified/required criteria. Any flow that do not match a classification scheme should not be

Figure 9. Firewall and Rate Limiter SFC in

AVALON.

 SoftFIRE

delayed and must be passed without modification. Secondly, OVS must be operated in kernel
space to reduce delay, and must be operated by an SDN controller for dynamic traffic steering.
Third, automated operations must be favoured so as to minimise service interruption in cloud
services. Finally, service decomposition to multiple VMs is favourable for flexibility and
dynamicity, despite a single VM might be sufficient capacity-wise.

4 Performance of Software-defined Wireless Virtual

Reality Gaming on SoftFIRE (SWVR)

Real-time Virtual Reality (VR) gaming has become a promising but challenging technology for
the next generation of multimedia systems. Different VR headsets have been so far developed
and offered in the market, such as SONY PlayStation VR, Facebook Oculus RIFT, HTC Vive, and
so on. To provide high quality VR gaming experience, off-the-shelf VR headsets usually demand
a wired connection due to the requirement for high bandwidth. The controllers are powerful
gaming units, such as Personal Computer (PC) or a custom gaming controller (e.g. PlayStation).
In summary, VR applications have high hardware and connection bandwidth requirements,
which is often a limitation for mobility scenarios.

To overcome the above-mentioned issues, the company DozeroTech [27] has developed a
software backend system that supports wireless VR gaming applications over common wireless
technologies like, e.g., WiFi, and 4G/5G. Today, there are three typical solutions to make
wireless based VR gaming applications a reality:

 Advanced encoding/decoding algorithms, which however may increase user plane
latency in VR gaming applications,

 Specialised wireless technologies like WiGig [28], which do not support connectivity to
4G/5G mobile networks,

 Interpolation algorithms for image downscaling/upscaling. Specifically, the native
images of a game are downscaled at the game server side before transmission, while
the downscaled image can be accordingly upscaled at the game client side. As such,
the bandwidth usage for data transmission can be significantly reduced. However, the
higher the image quality requirements are, the more computational complexity the
algorithm has and the more resources (e.g., memory, CPU) are needed,

 Using extra information retrieved from multiple images in order to enhance the quality
of a particular image. However, this solution may lead to higher video processing
latency, and hence is not suitable for real-time VR gaming scenarios.

The unique approach pursued by DozeroTech was based on multiple important factors in VR
gaming scenarios, such as image quality, processing time, cost, portability, and energy
efficiency. The solution was submitted as a patent application to the Swedish Patent Office.

The experiment’s main goal on the SoftFIRE testbed was to evaluate the performance of this
solution in a real 5G virtualisation platform for mobile networking. The image
downscaling/upscaling method and the VR functionality were integrated in an open-source
cloud gaming system called GamingAnywhere (GA) [29]. Experimental results showed that the

 SoftFIRE

performance of the system well met the KPI verification requirements for Quality of Service
(QoS) and Quality of Experience (QoE).

4.2 Architecture

Figure 11 illustrates the deployment architecture. FOKUS 5G core [30] provided access to the
virtualisation server to a mobile equipment (Samsung Galaxy S8+), which was running the

experimenter’s Proxy Server VM that was
deployed via the SoftFIRE Experiment Manager
[17]. The VR game server had a wired connection
to the FOKUS testbed and had connectivity to the
local virtualisation platform of the SoftFIRE
network. Hence, the game server had
communication with the mobile terminal and the
SWVR proxy server through the SoftFIRE network
and the FOKUS 5G network base station. The
SWVR proxy server collected statistical
information about the communication between

the game server and the game client. The collected information was used for performance
analysis.

4.3 Key performance indicators

Three key performance indicators (KPIs) were used in the experiments to evaluate the
effectiveness of the experimentation system, which are as follows:

4.3.1. Percent loss in image resolution

The game server downscaled each original image (game frame) generated by the game server
and streamed it to the client. The game client upscaled the downscaled image for further
rendering. The key target in this process was that the upscaled image should have the same
resolution as the original image. Original images that were created by the game server had a
resolution of 2200 pixels x 1080 pixels. The tolerance level in this KPI was a maximum of 10%
degradation in received image resolution.

4.3.2. Round trip time (RTT)

In this experiment, round trip time in the context of a VR game was essentially considered to
be the time difference between the instance a user takes a game action (button click, console
input, etc.) to the game server and the instance some feedback is received on the user’s
screen. Experiments on the SoftFIRE architecture as defined above showed that average RTT
was 76.196 ms. This met the experimenter’s requirement of a maximum 120 ms within a 10%
tolerance margin.

4.3.3. Structural similarity index

Structural SIMilarity (SSIM) Index is referred to as a way of evaluating the image quality of a VR
game video by comparing the upscaled game frame at the client side with the native game
frame generated at the server side. Using a downscale factor of 0.5, average SSIM was found

Figure 11. SWVR setup and network topology.

 SoftFIRE

to be 0.8801, which met the experimenter’s requirement for an SSIM of 0.8, with a 10%
tolerance margin.

5 MODIO - Intelligent resource allocation for 5G cloud

environments

State-of-the-art NFVO autoscaling mechanisms are often manually configured. Specifically,
autoscaling parameters, i.e. NFV scale-in/out and the cooldown period parameters, are
manually set and do not change over time, irrespective of the incoming client load. This
approach has important drawbacks. First, in case of a sharp rise in demand for VNFs from the
clients, it is quite likely for the autoscaler’s fixed step scale-out action to prove insufficient to
keep up with the high load, leading to SLA violations. Secondly, a sharp drop in demand
combined with a small scale-in step value and/or high cooldown period causes waste of
resources and unnecessary power consumption of the telco cloud infrastructure. Third, similar
scenarios can be outlined in cases of high scale-in or scale-out values being statically
configured within an autoscaler. All such drawbacks stem from the same underlying problem
within the autoscaler’s engine: the impedance mismatch between the actual demand and the
implemented autoscaling policy within the NFVO.

The “Intelligent resource allocation for 5G cloud environments experiment” was designed by
Modio Computing [31]. The experiment implemented and validated a novel computational
intelligence mechanism, which dynamically determines appropriate values of OpenBaton’s [32]
scale-in/out parameters1. The mechanism incorporates forecasting algorithms to predict the
upcoming system load in order to help determine OpenBaton’s autoscaling action parameters.

The experimenter compared the performance between:

 The current static auto-scaling mechanism
in OpenBaton where the autoscaling
policy’s specific action parameters are
manually configured

 The experimenter’s machine-learning
approach for dynamically generating the
policy content and submitting the
resulting policies to OpenBaton.

5.2 Deployment of the experiment

on SoftFIRE

The high-level architecture is depicted in Figure
12. The prediction engine leveraged Modio’s
commercial Qiqbus streaming analytics platform
to predict upcoming resource allocation

1 The work to derive a performant cooldown parameter constitutes ongoing Modio work towards MVP
development.

Figure 12. MODIO experiment architecture.

 SoftFIRE

adjustment requirements for each active network service. Load forecasts were generated by
three distinct timeseries prediction algorithms, namely, ARIMA, Holt-Winters, and Recurrent
Neural Networks (RNN).

To evaluate each forecasting approach, a number of virtual machines (VMs) were instantiated
within the FOKUS testbed in order to host the WebRTC service and emulate a telco NFV cloud.
The client load was generated by a cluster of VMs located in Modio’s private Google cloud
where multiple WebRTC sessions were launched from Google Chrome processes. All sessions
were tunnelled through a TURN server to bypass NAT traversal issues. The number and
duration of the client sessions were handled by Selenium and they were configured by
experimentation scenario scripts.

5.3 Experiment scenarios

Scenario 1: Under- provisioned number of VNFs (scale-out)

The experimenter first evaluated the performance of SLA guarantees provided by the
predictive autoscaling approach. An insufficient number of VNFs were initially instantiated at
FOKUS for serving incoming WebRTC sessions from the Virtual Machines within the Google
cloud. In scenarios with fast increase and decrease of demand as well as with high-sustained
load, it was validated that predictive algorithms (ARIMA, Hold Winters, RNN) improved the
performance of the standard autoscaler of OpenBaton which does not currently use predictive
models and performs scale-out operations with fixed-step scale-out autoscaling policies. The
effect of our approach is summarised in Table I below.

Table 1. Ratio of sessions per VMs in patterns including fast increase and decrease of demand and high-

sustained load

Algorithm

Measured metrics

Active VM

time

(seconds)

SLA-Conforming

Session Time

(seconds)

Ratio (Sessions/VM)

ARIMA 544 405 0.744485294

Holt Winters 259 320 1.235521236

RNN 365 240 0.657534247

Standard 153 38 0.248366013

However, in other experiments with different traffic patterns, OpenBaton’s standard
autoscaler exhibited slightly worse performance than its predictive counterparts. This is due to
the slow start-up time of OpenStack VMs during the scale-out phase. Specifically, despite the
fact that predictive algorithms are able to capture the pattern of the load increase, the
significant time taken by OpenStack to allocate additional VMs (typically ~120 secs) hindered
the potential benefits of Modio’s approach. This is a lesson learned and is being addressed by
employing containerized environments instead of virtual machines.

Scenario 2: Over-provisioned number of VNFs (scale-in)

The performance of Modio’s approach against OpenBaton’s default autoscaler was evaluated
for different over-provisioned states, involving more VNFs than necessary. One such state was

 SoftFIRE

achieved by first increasing the number of WebRTC clients and then reducing their number
and thus the total load which was received as input to OpenBaton NFVO.

Figure 13 depicts the performance of an
indicative experiment that involved over-
provisioning of resources, which used the
Holt-Winters algorithm. During the scale-
in phase, the figure demonstrates Holt-
Winter’s capability to decommission
WebRTC VMs compared to the default
autoscaler of OpenBaton. This is due to
the fact that the machine learning
approach is able to quickly detect the
sudden load decrease and trigger
appropriate scale-in actions. This
capability cannot be offered by static
autoscaling mechanisms. It is important

to note that, in this experiment, the default autoscaler spent 4880 CPU-seconds during the
over-provisioning phase, while the Holt-Winters autoscaler within the autoscaling engine only
occupied 2550 CPU-seconds, resulting in an energy saving of approximately 48% for the
provider hosting the WebRTC 5G service. Analogous energy saving outcomes have been
observed when using different forecasting approaches.

5.4 Conclusion

For the over-provisioned scenario, the experiment clearly led to the conclusion that the most
effective method in terms of meeting SLA requirements of WebRTC clients was the ARIMA

algorithm, as presented in Figure
142. Furthermore, Holt-Winters and
RNN both outperformed the default
OpenBaton autoscaler, being able
to scale-in resources more
effectively. Moreover all validated
forecasting techniques have
resulted in energy savings for the
NFV cloud provider (emulated by
FOKUS testbed and OpenBaton)
since all technqiues have resulted
that the experiment used less
resources to serve the input load. A
video describing Modio’s

experiment is available on YouTube [33]. Ongoing work is carried out by Modio in order to
produce a minimum viable product and secure the implementation through filing of a patent.

2KPI 3 in Figure 14 the refers to KPI that measures if the approach outperforms OpenBaton’s default
autoscaler in terms of guaranteeing the SLA for WebRTC session for over-provisioned use cases.

Figure 14. KPI3 and energy savings in over provisioned use cases

Figure 13. Scenario: Over-provisioned number of VMs.

Comparison of default auto-scaler and Holt Winters.

 SoftFIRE

6 Avissos

Wireless networks, which have stringent resource limitations and fast-changing conditions
require better architectures and a cross-layer approach to support high-volume and
bandwidth-intensive applications, like video streaming. The experiment, called Adaptive Video
streaming with Software Defined Networking, from the company StreamOWL [34] was on
Quality of Experience (QoE) for video streaming applications. The experiment targeted at
improving QoE of video streaming users by means of a cross-layer approach that considered
end-to-end data paths. This adaptive solution considered varying network conditions of video
clients, and determined optimised routing paths, also taking into account the network’s
topology and resources. At the application layer, the Dynamic Adaptive Streaming over HTTP
(DASH) approach enabled seamless adaptation of the video client to current network
conditions.

6.2 Architecture

The experiment is simply illustrated in Figure 15.
Initially, the video client requested a video from
the video server, which communicated with an
SDN controller that monitored network
conditions (e.g. congestion, delay) to decide
which media server is more appropriate for
content delivery to the video client by changing
the routing path. The routing decision was based

on optimization of the end-user QoE. The
SoftFIRE federated testbed provided multiple

testbeds at different locations, supporting SDN functions and allowing routing adaptation.

The solution considered (i) network topology, (ii) link capacities, and (iii) the specific QoE
requirements of each application. The
path selection process was adaptive to
changing network conditions, e.g. jitter,
delay, bandwidth, node/link failure. The
quality assessment model was based on
QoE assessment methods of audio-visual
quality assessment for adaptive
streaming over HTTP, as described in ITU-
T Recommendation P.1203 [35], which
has been validated in many different
network conditions. Performance was
evaluated for various metrics, such as

start-up delay, number/frequency of rebuffering events, sustained video bitrate, and objective
Mean Opinion Score (MOS).

The experiment setup is illustrated in Figure 16, which includes an HTML5 player (based on the
YouTube IFrame API) which provides measurements of video resolution, startup delay, number

Figure 15. Video streaming SDN architecture.

Figure 16. AVISSOS experiment setup.

 SoftFIRE

of re-buffering events and duration. This web page was hosted at the Experimenter’s site, and
the video was fetched from YouTube.

The setup also included a DASH client which was responsible for downloading the input video
and controlling the adaptation strategy based on the network conditions of the client. The
client chose to request segments with lower resolution if it detected a drop in the throughput
of the previous segments, in order to avoid buffer under-runs which would result in
interruptions in video playback. The video client was mplayer, since it can operate in a
headless mode and is a lightweight and robust application which can handle DASH streams. In
the case of a stand-alone video client, the proprietary “StreamOwl over-the-top (OTT) probe”
was used, which monitors Internet traffic in a passive and unobtrusive way using Deep Packet
Inspection (DPI) techniques and evaluating the impact of service parameters and performance
metrics (e.g. video bitrate, network degradations, type of service, etc.) on user-perceived
quality.

The algorithm for QoE estimation was based on the ITU-T Recommendation P.1201-PD [36],
the international standard for quality assessment in IP-based applications. More specifically,
the probe enabled the monitoring of the following key performance/quality indicators:

 Audio/video QoE (in terms of MOS),
 Video startup delay,
 Video rebuffering/freezing (timestamp+duration of each event),
 Video quality switches in ABR testing,
 Segment throughput and bitrate,
 Segment download time,
 Number of video representations (analysed by the manifest file),
 Audio/video quality of each segment,
 HTTP errors (4xx/5xx messages).

6.3 Results

The results of the StreamOWL OTT probe were
stored locally in the user equipment and
transferred to a local repository after experiment
execution. In contrast, the results from the
embedded HTML5 player for the YouTube test
were stored directly in the StreamOWL server
which hosted the web-page, immediately after
the end of the video playback.

The other nodes, which are depicted in Figure 15,
were configured as intermediate nodes

(switches), so that the traffic could be routed through a specific combination of them to the
final node which contained the video client. In this respect, it was possible to emulate the links
between the nodes with the desired level of background traffic (or signal attenuation), to
modify the throughput and therefore to emulate different levels of traffic bottlenecks.

Figure 17. Re-buffering events.

 SoftFIRE

Experimental results showed improvement of video-related metrics, such as number and
duration of re-buffering events, and Mean Opinion Score. Sample results are shown in Figure
17, Figure 18 and Figure 19.

7 Demi

In order to achieve integration of VNFs with wide area network (WAN) connectivity services,
this experiment called “Dynamic WAN interconnection for multiple NFVI-PoP locations” (DEMI)
deployed a WAN Infrastructure Connectivity Manager (WICM) on SoftFIRE. WICM was
particularly targeted at integrating transit VNFs, which account for a large share of the VNFs
that are candidate to be offered “as-a-Service”.

7.2 WAN Infrastructure Connectivity Manager (WICM)

WICM manages the WAN resources in a
similar way that the Virtualized
Infrastructure Manager (VIM) manages
resources within an NFVI Point of
Presence (PoP) network. It steers data
traffic whenever a new service is
instantiated across multiple NFVIs.
When an NFV services is selected, the
request is forwarded to the NFVO.
Through the NFVO, service mapping is
performed in order to select the
appropriate NFVI PoP, and connectivity
from the WICM can be requested. To

achieve this type of connectivity, WICM steers traffic based on VNF Forwarding Graph
Descriptor (VNFFGD) rules and network WAN connectivity resources.

As shown in Figure 20, the NFVO requests the WICM to steer the data traffic so that packets
pass through a pre-defined sequence of VNFs, located in NFVI-PoPs A and B (Sites A and B, in
the figure). It should be mentioned that the complexity of the process performed in the

Figure 18. Re-buffering time. Figure 19. Mean Opinion Score.

Figure 20. Data traffic steering through WICM.

 SoftFIRE

WICM depends merely on (i) the physical and logical locations of VNFs, (ii) the common
network abstractions used, and (iii) the available network connectivity resources.

The architecture of DEMI, as shown in Figure 21,
enables a clean separation between the role of NFVO
(i.e., resource management, service mapping, and
NFVI-PoP selection, etc.) and the role of WICM (end-
to-end network connectivity establishment,
NFVI/WAN integration).

 WICM API: Provides a REST interface through
which the NFVO can request connectivity services,

WICM Traffic Redirection Services: Retrieves the
networking graph, translates them correctly into
traffic steering rules that are to be sent to the
controller.

WICM Database: The database consists of two tables: (1) Connectivity, which keeps the
location where the information about the underlying infrastructure has to be declared and
pre-configured. (2) UserClient, which contains information about the source of the data traffic
and its final destination, i.e. the target.

The WICM module is composed
of a set of functional components:

• Server: A UDP sender. Sends
lowercase letters to the Client,

• Client: A UDP receiver that
receives the text from the Server,

• CapVNF: The VNF that
capitalizes the text intercepting the
client-server connection,

• Two OVS instances that are
controlled by WICM to enforce the
network service embedding
between the Client and the Server.

7.3 Deployment on SoftFIRE

The WICM in this particular deployment was located on an ORION server that had
connectivity with the rest of the components located on the SoftFIRE testbed.

DEMI based on connectivity information available to the WICM in relation to the network
attachment points (switch ports, IPs, mac addresses etc), the quantitative characteristics of
the provisioned network links (e.g. latency, capacity etc) and the required end-to-end QoS
characteristics, was able to create virtual networks and configure the proper rules at the SDN

Figure 21. WICM architecture.

Figure 22. Deployment of DEMI on SoftFIRE.

 SoftFIRE

controller (i.e. OpenDaylight [37]) in order to steer traffic between two end-points through
multiple NFVI-PoPs.

8 Enforce

This experiment from University of Thessaly, which was called the IntelligEnt MoNitoring oF
NetwORking ServiCEs (ENFORCE), was themed on virtual setup boxes (vSTB). The experiment
involved traffic monitoring and forecasting, to drive VNF scale-in and scale-out operations
based on the monitoring outcomes. The experiment provided a benchmarking tool and an
extension to the SoftFIRE framework that monitors virtualized resources and services defined
for realizing Setup Box (STB) functionalities, called vSTBs. In particular, two parts of a vSTB, i.e.
the vPVR (virtual Personal Video Recorder) and the aggregation of video streams defined in
multiple formats were considered.

The tool simulated iTV service demand, and tested the performance of the platform. The
monitoring mechanism used by the tool was the basis for configuration or re-configuration
flags to support efficient scale-in scale-out orchestration decisions. When vSTB traffic was
predicted to be below a threshold, a scale-in alert was fired. Similarly, when the vSTB traffic
was predicted to be above a higher threshold, a scale-out alert was triggered.

Tests on the SoftFIRE platform were performed, adopting multiple data video sources acquired
by various URIs offering different TV services as well as synthetic traces. Results on the three
performance metrics, i.e. (i) service start latency, (ii) service availability (percent of time when
the requested service was available to users), and (iii) fulfillment of storage demand from the
application (on-demand request for storage space availability) are shown in Table 2.

Table 2. Results of the ENFORCE experiment.

OpenStack
VM Flavour

Service
Availability (%)

Latency
(ms)

Storage demand
fulfillment (%)

Small 96.89 150.62 86.41

Medium 92.55 46.80 95.68

The latency of invoking iTV services was recorded just after the request for invocation of the
offered services. It was observed that adopting a medium VM flavour reduces the latency due
to increased virtual resources.

The storage demand fulfillment was below what was targeted at initially, but close to the pre-
defined goal. It was observed that OpenStack small flavour can support 1000 users but not
2000 at the same time. Finally, storage demand fulfillment depends on the amount of the
available storage in the VM at the time of request. It was observed that the higher the storage
resources are, the higher the rate of fulfillment becomes. The average service availability was
found to be above the pre-defined goal.

The results show that the proposed monitoring mechanism can help scale-in or scale-out
actions to upgrade or downgrade the resources involved in the virtualized environment, by

 SoftFIRE

means of modifying the VM flavour where iTV services were deployed. This way, the
management of the available physical resources were efficiently handled to maximize
performance and ensure sufficient QoS.

9 Privacity

This experiment by the company HOP Ubiquitous [38] was focused on smart city data
management services, to indirectly improve privacy and security of users by means of
promoting distributed SDN-based data centres that host data storage for smart city services.
The experiment in general targets at providing a scalable and trustable deployment of basic
services such as data storage, where the benefits of IoT and 5G can be sufficiently offered,
whilst ensuring trust in IoT deployments, by taking advantage of the NFV, SDN, and edge
computing technologies.

The PrivaCity experiment was based on a service offered by HOP Ubiquitous for data storage
over the OMA LwM2M [39] protocol. This protocol is widely extended and supported by
various platforms, such as ETSI oneM2M [40], and also Future Internet software solutions,
such as FIWARE [41], thereby making it friendly for multiple SDN/NFV and 5G infrastructure
providers. The experiment focused on information reporting functionalities of OMA LwM2M,
i.e. read data, write data, and subscribe to events. The experiment in the SoftFIRE platform
was based on an OMA LWM2M client-server infrastructure, and involved the following
components:

 Standalone HOMARD platform (Cloud side): HOP Ubiquitous provides an IoT device

management platform, called Homard [42]. This platform supports OMA LWM2M

connections and is able to connect and share data with LwM2M clients, providing a

simple and intuitive dashboard where the user can find a playground for data

visualization and device management. The platform keeps track of the data amount

received from the LwM2M devices connected to the platform. This web service is

called Historical Data Cache (HDC), which allows data collection and statistics

derivation, or application of complex data mining algorithms. This service was used as

a server in this experiment.

 Virtual Object - VO (Sensor / IoT side): The experiment included virtual sensor objects,

which are simple micro-service instances, each connected directly to the IoT OMA

LwM2M physical device that they are in constant communication with. The VO

offered a simple API to fetch instant information, and make asynchronous

observations.

The experiment focused on data management for this IoT service consisting of multiple VOs
using SDN. The objective of the experiment was to achieve and showcase scalability and user
privacy, by keeping the data in the neighbourhood of data clients with edge computing.
Orchestration and deployment of services at the edge is also beneficial for better Quality of
Service (QoS).

 SoftFIRE

✓ Privacy: Edge deployment of services effectively reduces the number of network hops,

which reduces the possibility of potential vulnerability points on data paths.

✓ Scalability is envisioned to be a by-product of NFV services in 5G, which the SoftFIRE

project provided with its multi-testbed platform running OpenStack. Scalability is

needed for massive IoT deployments, which are expected in the Smart Cities domain.

In the experiments, IoT service scalability was tested with SDN, instead of the available

conventional backbone in the Internet.

The experiment deployed IoT services in three countries:
one location where the experimenter facilities is located
(Spain), and two locations where a SoftFIRE testbed
resides (Germany and the UK). This is illustrated in
Figure 23.

The experimenters expect to exploit the findings as part
of the 5G deployments during coming two years, when
SDN and network slicing capabilities will be widely
available.

10 Inmarsat

In this experiment, the company Inmarsat [43] provided a solution for service mobility and
policy management extension in the SoftFIRE federated testbed which spans multiple sites
across Europe. The solution was based on and inspired by the company’s solution for global
mobility of user equipment.

Having a dedicated Policy & Mobility Management mechanism (outside the NFVO space)
provides:

 interoperability with different NFVO implementations,

 an entity dedicated in the NFVi architecture that is responsible for complex mobility

event management,

 the ability to collect and consume data and events (synchronously or asynchronously)

from various layers and sources of the infrastructure.

The experimenter first defined mobility and policy-change events. The provided framework
consumed messages for mobility events, particularly for mobile equipment, which are
associated with a defined policy. The company’s infrastructure includes thousands of highly
mobile customer user equipment that are served by different ground stations.

In the experiment, the events from a radio access network (RAN) equipment was considered to
trigger a re-configuration procedure for a provisioned service running as a virtual network
function (VNF) on the SoftFIRE platform. The experimenter used a policy mechanism to trigger

Figure 23. Service chain deployment of

the Privacity experiment.

 SoftFIRE

orchestration events by interfacing with the Open Baton NFVO based on the policy assessment
results. In doing so, the experiment also proved its interoperability with SoftFIRE’s NFVO
implementation, i.e. Open Baton, and also proved the concept of a dedicated entity in the NFV
architecture that is responsible for complex mobility event managements.

The experimenter first tested their solution on
a local virtualisation environment, which
included OpenStack and Open Baton. The high-
level setup is illustrated in Figure 24. The setup
includes the mobility and policy framework
running on a virtual machine, the local Open
Baton, and running test VNFs. A simple firewall
was selected as a test VNF, whose operation

was verified by requesting access to a Linux server in the SoftFIRE testbed from an external
Linux machine.

Once the solution was verified,
the test VNFs were deployed on
the SoftFIRE testbeds. This is
illustrated in Figure 25. The
experimenter deployed the
mobility and policy management
solution on their local
environment in a VM, which then
interacted externally with the
Open Baton NFVO hosted on the
SoftFIRE platform. The
deployment of the test VNFs was

performed via the SoftFIRE Middleware [4] on the Fokus [20] component testbed of SoftFIRE.
Once the deployment was validated, the mobility policy was set and then triggered by an
event generation mechanism. This then demonstrated that the policy was triggered, resulting
in orchestration events that migrate the service, i.e. the VNF, from one testbed to the other.
The migration of the service (test VNF) was tested between the Fokus [20] and Ericsson [44]
testbeds.

11 NFV-Shield

This experiment aimed at deploying, integrating, testing, and validating Intrusion Detection
System (IDS) tools in NFV-based scenarios. Security in VNFs is one of the most sought after
features, as NFV is expected to be adopted by various industry verticals with the flexibility and
scalability it can provide. Furthermore, security in virtualisation systems is still a main concern
for platform providers and customers. As such, this experiment aimed at enabling an
orchestrated management of an IDS as a VNF that can be employed by other VNFs, such as
Web Services, IMS (IP Multimedia Subsystem) and 3GPP’s EPC (Evolved Packet Core)
components. The experiment involved extension of the security functionalities supported by
Open Baton.

Figure 24. Inmarsat experiment's high-level setup.

Figure 25. Test of the mobility and policy management mechanism by

migration of running services.

 SoftFIRE

The deployed IDS VNF, called Shield IDS, was evaluated for its accuracy, which was measured
as a ratio of identified attacks to all performed attacks, i.e. detection ratio. Table 3 lists the
types of attacks in the NFV-Shield experiment.

Table 3. Type of security attacks used in the NFV-Shield experiment.

Type of attack Description Employed tools

Scanning Scanning available/open TCP and UDP ports,
using a port scanner.

Nmap [45] is employed as a port scanner
tool.

Vulnerability
exploitation

Exploitation of vulnerabilities in web
applications, such as cross-site scripting, and
remote code execution, among others.

Web application as target, with included
vulnerabilities. The OWASP ZAP [46]
application is employed in attack mode.

System penetration
(Brute-force ssh

connections)

Brute-force attack from existent users (e.g.
ubuntu, root), though the ssh service.

Use patator [47] or Ncrack [48] tools
available in Kali Linux [49].

11.2 Attack Scenarios

11.2.1. Scenario 1: Base attack

In this scenario, a Shield-IDS VNF was
deployed on SoftFIRE, and a Kali Linux
attacker performs security attacks. A
monitoring node gathered values on CPU
usage, I/O statistics, etc. The scenario was
aimed at configuring the IDS to support detection and protection from the envisioned attacks,
as well as to identify the performance and accuracy of the Shield IDS.

11.2.2. Scenario 2: Tap as a service

This is a port mirroring scenario in which the traffic received on port 80 of the web server
instance was forwarded to the Shield IDS instance, which can then provide active protection.

From a deployment perspective,
this scenario also enables the
capability to dynamically
configure port mirroring. For
instance, port mirroring can be
performed according to instance
lifecycle (i.e. when instances are
deployed, provisioned or

deleted).

11.2.3. Scenario 3: Port forwarding at target VNF

The Distributed IDS analysis required Shield IDS agents to be deployed in each instance that
needs to be secured. The Shield IDS agents performed analysis of received information,
according to the rules that can be configured for the service(s) running in the VNF instance to

Figure 27. Port mirroring scenario in the NFV-Shield experiment.

Figure 26. The base attack scenario in the NFV Shield

experiment

 SoftFIRE

be secured. The results were then sent to the Shield IDS instance for aggregation and for
integrated security management. Despite the granular configuration of this approach, where
rules can be customised according to the service, this approach has the disadvantage of having
a high performance impact, i.e. CPU, memory, and storage resources are required for real-time
analysis of traffic.

On the other hand, the Port Forwarding approach mimics the Tap as a Service scenario in
Section 11.2.2, with the difference that forwarding was performed at instance level and not at
infrastructure level. For instance, in Linux based instances, iptables [50] can be configured to

“duplicate” the received traffic and to
send it to the Shield IDS. An immediate
advantage of this approach is the
reduced impact on the protected
instances in terms of resource usage (i.e.
storage resource is not required).
Nonetheless, unlike the Tap as a Service
scenario, port forwarding at instance
level is not very scalable and cannot

flexibly manage security policies. For instance, all instances that need to be protected needed
to be modified.

12 5GNaaS

3GPP 5G network system architecture [51] has defined the User Plane Function (UPF) as a
flexible software component that can be readily deployed and programmed from the control
plane of the mobile packet core network. The 5G Network as a Service (5GNaaS) experiment
was focused on evaluating the deployment of the UPF at the network edge, to provide a local
breakout point north of off-the-shelf LTE eNodeB equipment. This edge UPF component was
deployed on an SDN switch between an eNodeB and the virtualised packet core running on the
SoftFIRE platform.

The experiment ran two separate VMs, each including a different type of network slice. The
first VM included both control plane and user plane parts of an LTE network. This slice had a

dedicated Femto cell equipment connected to it on a dedicated
PLMN ID. The second slice had a separate LTE network core on
another PLMN, including only its control plane; as the user plane of
this second LTE network was deployed on a physical server on the
path in between a second Femto cell and this second VM. This
second LTE network was deployed to demonstrate the User Plane

Function (UPF) at the network edge, of the newly introduced 5G
system architecture. The UPF in this experiment consisted of the

entire SGW and PGW, retaining the UP and CP parts as in LTE, yet was deployed at the network
edge as a proof-of-concept demonstration of UPF deployment to support MEC applications.

In addition to showcasing deployment of custom mobile network core slices, either as CP-only
or CP and UP combined, the experiment also included Software Defined Networking (SDN)

Figure 28. Port forwarding at target VNF instance.

Figure 29. 5GNaaS SDN

hardware switch board.

 SoftFIRE

functionality, identifying traffic flows based on PLMN IDs, which was needed to program an
Open Virtual Switch (OVS) [22] that ran at the same server where the edge UPF was located, so
that traffic redirection could be performed to this edge UPF.

Throughput and latency performance on the user plane was observed and compared between
two scenarios: (i) Edge UPF on edge SDN switch and virtual core on the SoftFIRE platform, and
(ii) virtual UPF and virtual core both on the SoftFIRE platform. The separate virtual cores
running for each scenario were separate network slices running in parallel. Performance tests
were carried out on Android mobiles towards an Internet server.

13 Aerial Insights

Due to the growing demand for connectivity across different types of networks and
equipment, which is particularly expected when 5G mobile networks are rolled out, enabler
technologies, such as drones, have now been equipped with communication equipment that
would enable their connectivity to existing terrestrial networks. In view of this, the company
Aerial Insights [52], which is a data analytics company with focus in the drone industry,
designed and deployed an experiment on the SoftFIRE platform to test their visual data
processing algorithms in a virtualisation environment, and to leverage industrial standards,
such as TOSCA and ETSI NFV MANO [53], in use of virtualised drone data processing
applications. The experiment involved processing raw images collected by drones dynamically.
Specifically, the experiment tested image processing algorithms that build aerial maps from
raw images and provided intelligent map streaming based on dynamic network conditions,
whilst ensuring uninterrupted user experience.

The experiment on the SoftFIRE platform focused on near real-time map previews, with an aim
to provide uninterrupted pre-computed map visualisation, while maintaining perceived QoS.
Towards this, the experimenter first performed an accurate configuration of their software
based on testbed conditions so that an automatic provisioning of (i) computing instances,
(ii) the connectivity between the instances, and (iii) an accurate model of the customers
operating in the field, are achieved. Then, multiple users that consume the map data are
simulated in the testbed environment. These two steps enabled real-time test of the
experimenter’s algorithm.

Two types of users were modelled: (i) third party developers accessing the public APIs ,
and (ii) human users that connect to the system using a browser. Mimicking the user
behaviour involved downloading two kinds of images: map tiles, which are similar to the
ones that are consumed in online services like Google Maps, and high resolution maps,
which are useful for batch processing on the customer premises.

The experiment had a modular architecture in which processing, persistent storage, and APIs
and user interfaces were mapped to individual components. The processing components were
based on a master-slave scheme in which workers can be added on demand. Most of the
components were scalable by design, i.e. new instances of a given service can be replicated,
booted, and can provide machine level parallel execution of individual requests. Most requests
were atomic and stateless by design (except for the permanent storage used to “remember” the
results), so they can be processed by containers. Several container instances of the frontend

 SoftFIRE

and public APIs could run in parallel so the load could be shared. They were hidden behind
an nginx [54] server that acted as a reverse proxy and load balancer.

Each instance was found to be capable of responding to requests from several hundreds of
users, which in part was due to the fact that the patterns of usage were more intensive on the
client side (browser downloading and rendering web pages) than on the Internet-facing
servers (software accessing the APIs, composing web pages and delivering them to the
customers). Those servers were heavily optimized to use caching. In the case of public APIs,
the experimenter demonstrated that each server could sustain good performance for several
thousand users, and peaks of traffic associated to more than 8000 simultaneous users. The
experimenter performed an extensive set of tests, each time simulating a different number of
users on the platform, which included functionality, performance, and network impairment
tests.

This experiment exposed the benefits of virtualization for network and computing resources.
The experiment execution was consistent and reproducible, and the experimenter could
simulate different loads, synthetic customer locations, and network capabilities.

14 Concluding Remarks

Various experiments were executed on the federated virtualisation testbed provided by
SoftFIRE. This white paper presents the experiments that deployed NFV and SDN solutions on
the SoftFIRE platform during its 2nd Wave of Experiments.

The newly developed SoftFIRE Middleware helped experimenters define different types of
experiments, each provided by the platform as virtualised resources. Thanks to its Middleware,
the project supported many more experiments during its 2nd Wave. The Project’s main
achievement during this experimentation wave is hence a new and modular middleware,
enabling services for various 5G applications. SMEs and academic organisations benefitted
from the SoftFIRE platform, by testing their solutions in a virtualised test environment. The
white paper presents all these applications and solutions, which are examples of near-future
virtualised services that the industry and the technology market will benefit from.

 SoftFIRE

Bibliography

[1] Second Wave of Experiments on the SoftFIRE platform, https://www.softfire.eu/open-

calls/second-open-call/

[2] EU SoftFIRE project, https://www.softfire.eu/

[3] First Wave of Experiments on the SoftFIRE platform, https://www.softfire.eu/open-

calls/first-open-call/

[4] SoftFIRE Middleware, http://docs.softfire.eu/softfire-middleware/

[5] SoftFIRE SDN Manager, http://docs.softfire.eu/sdn-manager/

[6] SoftFIRE NFV Manager, http://docs.softfire.eu/nfv-manager/

[7] SoftFIRE Security Manager, http://docs.softfire.eu/security-manager/

[8] SoftFIRE Physical Device Manager, http://docs.softfire.eu/pd-manager/

[9] SoftFIRE Monitoring Manager, http://docs.softfire.eu/monitoring-manager/

[10] “Network Function Virtualisation: State-of-the-Art and Research Challenges”, Rashid

Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, Raouf Boutaba, IEEE

Communications Surveys & Tutorials, vol 18, no 1, 236-262, September, 2015,

[11] "Network Functions Virtualisation— Introductory White Paper", ETSI, 22 October 2012,

retrieved 20 June 2013.

[12] “Software-Defined Networking: A Comprehensive Survey”, Diego Kreutz, Fernando M. V.

Ramos, Paulo Esteves Veríssimo, Christian Esteve Rothenberg, Siamak Azodolmolky, Steve

Uhlig, Proceedings of the IEEE, vol 103, no 1, pp 14-76, January, 2015,

[13] S. Ahvar, H. Pann Phyu, S. M. Buddhacharya, E. Ahvar, N. Crespi, R. Glitho, “CCVP: Cost-

efficient Centrality-based VNF Placement and Chaining algorithm for network service

provisioning”, IEEE NetSoft, 2017.

[14] Institut Mines Telecom, Telecom SudParis, https://www.imt.fr/en/

[15] Azure cost modelling, https://azure.microsoft.com/en-gb/pricing/

[16] OpenStack open source cloud computing software, https://www.openstack.org/

[17] SoftFIRE Experiment Manager, http://docs.softfire.eu/experiment-manager/

[18] Zabbix, http://www.zabbix.com/

[19] netfilter, https://www.netfilter.org/

[20] Fraunhofer Fokus, FUSECO Playground,

https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/fuseco_playground

[21] 5G Innovation Centre, University of Surrey, http://www.surrey.ac.uk/5gic

[22] Open Virtual Switch (OVS), http://openvswitch.org/

[23] Eight Bells Research Ltd, http://www.8bellsresearch.com/

[24] Service function chaining architecture, IETF, [Online] available at:

https://tools.ietf.org/html/rfc7665

[25] Service function chaining, OPNFV, [Online], available at:

https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

https://www.softfire.eu/open-calls/second-open-call/
https://www.softfire.eu/open-calls/second-open-call/
https://www.softfire.eu/
https://www.softfire.eu/open-calls/first-open-call/
https://www.softfire.eu/open-calls/first-open-call/
http://docs.softfire.eu/softfire-middleware/
http://docs.softfire.eu/sdn-manager/
http://docs.softfire.eu/nfv-manager/
http://docs.softfire.eu/security-manager/
http://docs.softfire.eu/pd-manager/
http://docs.softfire.eu/monitoring-manager/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rashid%20Mijumbi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rashid%20Mijumbi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Joan%20Serrat.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Juan-Luis%20Gorricho.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Niels%20Bouten.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Filip%20De%20Turck.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raouf%20Boutaba.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Diego%20Kreutz.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fernando%20M.%20V.%20Ramos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fernando%20M.%20V.%20Ramos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paulo%20Esteves%20Ver.AND..HSH.x00ED;ssimo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christian%20Esteve%20Rothenberg.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Siamak%20Azodolmolky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Steve%20Uhlig.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Steve%20Uhlig.QT.&newsearch=true
https://www.imt.fr/en/
https://azure.microsoft.com/en-gb/pricing/
https://www.openstack.org/
http://docs.softfire.eu/experiment-manager/
http://www.zabbix.com/
https://www.netfilter.org/
https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/fuseco_playground
http://www.surrey.ac.uk/5gic
http://openvswitch.org/
http://www.8bellsresearch.com/
https://tools.ietf.org/html/rfc7665
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

 SoftFIRE

[26] nDPI, Open and Extensible LGPLv3 Deep Packet Inspection Library,

https://www.ntop.org/products/deep-packet-inspection/ndpi/

[27] DozeroTech, http://www.dozerotech.com/

[28] Wireless Gigabit Alliance (Wi-Gig), Wi-Fi Alliance, https://www.wi-fi.org/

[29] GamingAnywhere, an open-source cloud gaming platforms, http://gaminganywhere.org/

[30] Open5GCore, https://www.open5gcore.org/

[31] Modio Computing, https://modio.io/

[32] OpenBaton, https://openbaton.github.io/

[33] MODIO experiment video, https://youtu.be/p47y6nl9sv4

[34] StreamOWL, http://www.streamowl.com/

[35] ITU Recommendation 1208, https://www.itu.int/itu-

t/recommendations/rec.aspx?rec=13158

[36] ITU Recommendation 1201, https://www.itu.int/rec/T-REC-P.1201/en

[37] OpenDaylight, https://www.opendaylight.org/

[38] Hop Ubiquitous, http://www.hopu.eu/

[39] Lightweight M2M (LwM2M), https://www.omaspecworks.org/what-is-oma-

specworks/iot/lightweight-m2m-lwm2m/

[40] ETSI OneM2M, http://www.onem2m.org/

[41] FIWARE, https://www.fiware.org/

[42] Homard platforms, https://homard.hopu.eu/

[43] Inmarsat, https://www.inmarsat.com/

[44] Ericsson RMED CloudLab, https://www.ericsson.com/portfolio/services-and-

solutions/learning-services/education-centers/rmed

[45] Network Mapper (NMap), a free and open source (license) utility for network discovery

and security auditing, https://tools.kali.org/information-gathering/nmap

[46] OWASP Zed Attack Proxy (ZAP),

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[47] patator, a multi-purpose brute-force attack tool, https://tools.kali.org/password-

attacks/patator

[48] Ncrack, a high-speed authentication cracking tool, https://tools.kali.org/password-

attacks/ncrack

[49] Kali Linux penetration testing tool, https://www.kali.org/

[50] iptables, https://www.netfilter.org/projects/iptables/index.html

[51] TS 23.501, System Architecture for the 5G System, 3GPP.

[52] Aerial Insights, https://www.aerialai.com/

[53] ETSI MANO specification, http://www.etsi.org/deliver/etsi_gs/NFV-

MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[54] nginx, https://www.nginx.com/

https://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.dozerotech.com/
https://www.wi-fi.org/
http://gaminganywhere.org/
https://www.open5gcore.org/
https://modio.io/
https://openbaton.github.io/
https://youtu.be/p47y6nl9sv4
http://www.streamowl.com/
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13158
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=13158
https://www.itu.int/rec/T-REC-P.1201/en
https://www.opendaylight.org/
http://www.hopu.eu/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
http://www.onem2m.org/
https://www.fiware.org/
https://homard.hopu.eu/
https://www.inmarsat.com/
https://www.ericsson.com/portfolio/services-and-solutions/learning-services/education-centers/rmed
https://www.ericsson.com/portfolio/services-and-solutions/learning-services/education-centers/rmed
https://tools.kali.org/information-gathering/nmap
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://tools.kali.org/password-attacks/patator
https://tools.kali.org/password-attacks/patator
https://tools.kali.org/password-attacks/ncrack
https://tools.kali.org/password-attacks/ncrack
https://www.kali.org/
https://www.netfilter.org/projects/iptables/index.html
https://www.aerialai.com/
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.nginx.com/

 SoftFIRE

List of Acronyms and Abbreviations

Acronym Meaning

3GPP Third Generation Partnership Project

5G Fifth Generation Mobile Network

ADS Assembly Data System

API Application Programming Interface

CP Control Plane

CPU Central Processing Unit

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

EU European Union

FTP File Transfer Protocol

FW Firewall

HDC Historical Data Cache

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IDS Intrusion Detection System

IMS IP Multimedia Subsystem

IoT Internet of Things

IP Internet Protocol

KPI Key Performance Indicator

LTE Long Term Evolution

LwM2M Leightweight Machine-to-Machine

MANO Management and Orchestration

MOS Mean Opinion Score

NAT Network Address Translation

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

 SoftFIRE

NFVO Network Function Virtualisation Orchestrator

NS Network Service

ODL OpenDaylight

OMA Open Mobile Alliance

OS Operating System

OTT Over-the-top

OVS Open Virtual Switch

PDN Packet Data Network

PGW PDN Gateway

PLMN Public Land Mobile Network

PoP Point of Presence

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RAN Radio Access Network

RNN Recurrent Neural Networks

RTT Round Trip Time

SDN Software Defined Network

SFC Service Function Chaining

SGW Serving Gateway

SLA Service Layer Agreement

SSIM Structural SIMilarity

SSL Secure Sockets Layer

STB Setup Box

TCP Transport Control Protocol

ToS Type of Services

TOSCA Topology and Orchestration Specification for Cloud Applications

UDP User Datagram Protocol

UP User Plane

UPF User Plane Function

VIM Virtual Infrastructure Manager

 SoftFIRE

VM Virtual Machine

VNF Virtual Network Function

VO Virtual Object

VR Virtual Reality

WAN Wide Area Network

Disclaimer

This document contains material, which is the copyright of certain SoftFIRE consortium parties, and may not be
reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from the proprietor of
that information.

Neither the SoftFIRE consortium as a whole, nor a certain part of the SoftFIRE consortium, warrant that the
information contained in this document is capable of use, nor that use of the information is free from risk, accepting
no liability for loss or damage suffered by any person using this information.

SoftFIRE has received funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement no. 687860.

