

Software Defined Networks and Network Function Virtualisation
Testbed within FIRE+

Programmability with NFV and SDN in
SoftFIRE

Programmability features offered to NFV/SDN experimenters by the
SoftFIRE federated testbed

March 2018

 SoftFIRE

Table of Contents

Table of Contents .. 2

List of Figures .. 3

List of Tables .. 4

1 Introduction .. 5

2 Programmability on the SoftFIRE Middleware: The Experiment Manager 5

2.1 Virtual resources provided to experimenters by the SEM .. 5

2.2 Architecture of the SEM .. 8

3 Network Service programmability using TOSCA ... 9

3.1 VNF lifecycle management .. 13

3.2 Using software configuration and management tools ... 14

3.2.1. Setting up a web server VNF using Ansible ... 14

4 NFV Orchestrator Extensibility .. 15

5 SDN Controller Access ... 17

5.1 Openstack SFC ... 17

6 Extending the SoftFIRE Middleware .. 18

7 Conclusions ... 20

Bibliography .. 21

List of Acronyms and Abbreviations .. 23

 SoftFIRE

List of Figures

Figure 1: The Experiment Manager Architecture. ... 8

Figure 2. Example CSAR file for an NS. .. 10

Figure 3. Code Snippet 1 - A sample NSD in YAML format. .. 12

Figure 4. VNF Dependencies ... 12

Figure 5. Code Snippet 2 - WebServer VNF. .. 14

Figure 6. Code Snippet 3 - The one-line script that runs the Ansible playbook for the web
server. .. 14

Figure 7. Code Snippet 4 - Ansible playbook yaml file contents, to create a web server VNF. .. 15

Figure 8. Open Baton Architecture. .. 16

Figure 9. OpenFlow tables assigned to an experimenter. .. 17

Figure 10. SoftFIRE Resource Manager Generic Sequence Diagram (between two Resource
Managers: X and Y) ... 19

 SoftFIRE

List of Tables

Table 1. Virtualisation resources provided by SoftFIRE. ... 6

Table 2. API URLs for some SoftFIRE software resources. .. 7

Table 3. Network Service terms and descriptions. ... 10

Table 4. OpenBaton's out-of-the-box dependency parameters. .. 13

Table 5. VNF lifecycle events, as defined by ETSI. ... 13

Table 6. Open Baton SDKs for extending the orchestrator with new modules or extending the
already existing modules. .. 16

 SoftFIRE

1 Introduction

Network Functions Virtualisation (NFV) [1][2] and Software Defined Networking (SDN) [3]
technologies are changing the game in the telecommunications market using concepts and
approaches from the Information Technology (IT) world. The main goal of NFV is full
automation of network services, including service lifecycle management, whereas SDN is more
focused on programmable networking functions that complement NFV, particularly for the
Fifth Generation (5G) mobile networks and applications.

The NFV platform provided by the EU SoftFIRE project [4], i.e. its federated virtualisation
testbed, exposes a number of its Application Programming Interface (API) sets to enable
programmability of the platform by its experimenters. In this document, the aim is to provide
an overview of these sets of API where experimenters can extend the platform, add new
features to it, or simply enable their experiments. . The document has a top-down approach,
first providing the general overview of the platform in terms of its programmability, and then
presents some of the platform components which expose their API.

First, the SoftFIRE Experiment Manager (SEM) [5] provided by SoftFIRE is presented, which is
the high level tool that enables experimentation on the platform, and links an experiment with
several software components, each of which act as a manager of a special experimentation
purpose. Then, particular focus is given to the SDN features of the platform, which make it
possible to implement additional networking functionalities.

2 Programmability on the SoftFIRE Middleware: The

Experiment Manager

The SoftFIRE Experiment Manager is the first point of interaction between the experimenter
and the platform. The main feature provided to the user by this tool is the reservation of the
platform’s virtualisation resources their experiments, which is done by uploading CSAR (Cloud
Service ARchive) [6] packages to the middleware.

2.1 Virtual resources provided to experimenters by the SEM

An experimenter can create virtual network functions (VNF) and network services (NS). Besides
these, the SoftFIRE platform also provides many out-of-the-box resources that the
experimenter can easily use and instantiate, which can interact and be integrated with their
custom VNFs.

 SoftFIRE

The virtualisation resources provided by SoftFIRE are listed in Table 1 below:

Table 1. Virtualisation resources provided by SoftFIRE.

Resource Name Resource Type Description

Monitor Monitoring Resource
This resource permits to deploy a Zabbix [7] server
that can be used to monitor all the experiment
virtual machines (VM).

Iperf NFV Resource

iPerf [8] is a tool for active measurement of the
achievable data throughput in IP networks. It
supports tuning of various parameters related to
timing, buffers, and protocols (TCP, UDP, SCTP with
IPv4 and IPv6). For each test, it reports the available
bandwidth, packet losses, and some other
parameters.

Open5GCore
NFV Resource

Open5GCore [9] is a prototype implementation of
pre-standard 5G networks. The software has been
available since November 2014. Open5GCore
represents the continuation of the OpenEPC project
[10] towards R&D testbed deployments. It has
been used over the years in multiple projects as a
reference vEPC implementation.

Open IMS core NFV Resource

The Open IMS Core [11] is an open source
implementation of IMS Call Session Control
Functions (CSCFs) and a lightweight Home
Subscriber Server (HSS), which together form the
core elements of all IMS and Next Generation
Network (NGN) architectures as specified today
within 3GPP, 3GPP2, ETSI TISPAN and PacketCable
[12]. The four components are all open source
software (e.g. the SIP Express Router (SER) or
MySQL).

FOKUS-cell Physical Resource

The Physical LTE Cell at Fraunhofer FOKUS [13] that
is connected to the Open5GCore NS. This LTE Cell is
a physical resource, which can be reserved using the
Physical Device Manager.

5GIC UEs Physical Resource

The three mobile phones located in indoor cabinets
in the 5GIC building in the University of Surrey, with
Android OS. The phones can be remotely reserved
as a physical resource via the UE Manager, and then
remotely controlled. The UE Manager is reachable
via the Physical Device Manager, when the user
chooses to reserve UEs as a physical resource.

Ericsson
Opendaylight

SDN Controller
SDN Resource

OpenDaylight (ODL) Controller [15] API endpoint for
the Ericsson Testbed. It allows the experimenter to
create and edit its traffic flows. ODL uses its
OpenFlow [16] Plugin REST API [17] to program
hardware and software switches.

FOKUS
OpenSDNCore

Controller
SDN Resource

OpenSDNCore Controller [18] JSON-RPC API
endpoint for the Fraunhofer FOKUS Testbed.

 SoftFIRE

Resource Name Resource Type Description

Firewall Security Resource

This resource creates an instance of UFW [19]
firewall. It can be deployed as a standalone VM or
as an agent directly installed on a VM of the
experiment. It also provides an easy REST API to edit
its rules.

Suricata Security Resource

This resource creates an instance of Suricata [20]
Network Intrusion Prevention System (NIPS), which
is a free opensource network threat detection
engine. It can be deployed as a standalone VM or as
an agent directly installed on a VM.

Most of these resources are fully programmable using their API. Below the links to the API
documentation of each of these resources is listed in Table 2:

Table 2. APIs for some SoftFIRE software resources.

API Name

Zabbix JSON-RPC API [21]

Firewall UFW REST API [22]

Suricata log and packet acquisition APIs [23][24]

pfSense REST API [25]

Opendaylight OpenFlow plugin REST API [17]

OpenSDNCore JSON-RPC API [18]

OpenStack SFC API [42][43][44]

The experiment CSAR package created by the experimenter contains some YAML [26] files with
the description of the experiment, the resources needed, and the reservation scheduling.
Users can define their custom NSes and VNFs using the NS and VNF descriptors of Open Baton
NFVO, which are fully compatible with the simple profile defined by the TOSCA (Topology and
Orchestration for Cloud Applications) language [27], for NFV. How to create this file is well
documented in [28].

 SoftFIRE

2.2 Architecture of the SEM

The SEM architecture has a high modular design, with loosely coupled components that can be
easily attached or detached from the main SEM. This kind of architecture was well defined in
this manner because, the SEM should not be just a piece of software to manage experiments,
but it was developed with the idea of creating a framework usable also in the future for similar
projects.

Currently, the SEM is composed of the following modules:

• SDN Manager manages SDN resources

• Security Manager for the Security resources

• NFV Manager is in charge of providing NFV functionalities to the middleware

• Monitoring Manager provides experimenter monitoring resource access

• Physical Device Manager handles the access to the physical resources

The components communicate between them using gRPC protocol [29].

As the architecture is modular, it is possible to add new managers to the SEM; this is presented
later in Section 6. The architecture of the experiment manager is shown in Figure 1.

Figure 1: The Experiment Manager Architecture.

 SoftFIRE

As shown in the figure, the NFV Manager is the middleware module that interacts with the
NFVO OpenBaton, and the SDN Manager is the module that communicates with multiple SDN
controllers, each provided by a different testbed in SoftFIRE. The Security and Monitoring
managers, however, are more related with complementary features of the middleware, i.e.
providing extra resources to experimenters.

When experimenter includes a security resource in their experiment package, the SEM uses
the Security Manager to deploy the specified resource, which is one of the following:

• Ubuntu UFW (Uncomplicated Firewall) [19]

• Suricata Server (Open Source Network Threat Detection Engine) [20]

• pfSense Server (Open Source FreeBSD based FW/Router Server) [30]

Similar to the Security Manager, the Monitoring Manager provides monitoring tools as
resources to experiments if requested. If requested by an experimenter, the SEM triggers and
action with the Monitoring Manager, which in turn provides a Zabbix server already installed
and configured inside the user tenant in order to monitor the experimenter’s VMs.

Requesting security resources require the experimenter to redirect their VMs’ traffic through
the deployed security service, which also means that the experimenter needs to create custom
routing tables in each involved VM. This provides flexibility to the experimenter as to how to
design the processing of their traffic. The experimenter may also choose to program traffic
flows using the SDN controller provided by the testbed(s) where the VMs are deployed. This
requires requesting SDN resources as part of the experimentation package. The component
testbed ADS [31] also provides service function chaining (SFC) [32][33] modules.

Finally, the Physical Device Manager allows the experimenter to reserve an LTE Femto cell
physically located at the FOKUS testbed, or get remote access to the smartphone devices
connected to the LTE cell at 5GIC, University of Surrey.

3 Network Service programmability using TOSCA

The SoftFIRE NFV platform is fully based on the ETSI MANO [42] compliant open source
orchestrator Open Baton [35]. Open Baton orchestrates Network Services consisting of a set of
VNFs. The deployment of the NFV resources can be done through the usage of TOSCA Network
Service Descriptors (NSD) for network services [36], and Virtual Network Function Descriptors
(VNFD) for VNFs. The descriptors allow to define the topology of all the NFV resources that
must to be created in order to instantiate the required Network Service.

The NS must be packaged in a CSAR file, which is a zip archive with extension “.csar” that
contains the following directory structure:

├── Definitions

| └── myNSD.yaml

├── Scripts

| ├── install.sh

| └── (VNF TYPE)

| └── script.sh

 SoftFIRE

└── TOSCA-Metadata

 ├── Metadata.yaml

 └── TOSCA.meta

Figure 2. Example CSAR file for an NS.

In the above example, the file myNSD.yaml is to contain the NSD for the requested NS. The
CSAR file essentially describes the directory structure and lists the necessary files for the
network service. These include the scripts to be run for lifecycle events.

In order to better a TOSCA NS descriptor, it is essential to clarify some key concepts, which are
listed in Table 3:

Table 3. Network Service terms and descriptions.

Term Description

Network Service (NS)
A Network Service is composed of a set of Virtual Network

Functions

Virtual Network Function (VNF)
A Virtual Network Function contains one or more Virtual

Deployment Units (VDU)

Virtual Deployment Unit (VDU)
A VDU is a profile of a virtual machine. Scale-in and Scale-out
actions are performed on VDU instances by the orchestrator.

Virtual Link (VL)
VL is an abstraction of a network on which the VDUs are

attached

Connection Point (CP)
CP represents the connection between a Virtual Link and a

VDU

In this table, a hierarchical dependency of different NFV concepts are listed top to down.
Based on this information, it is possible to have a glance at a sample NSD in YAML format, as
seen in the below code snippet:

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0

description: Example of NSD

metadata:

 ID: dummy-NS

 vendor: Fokus

 version: 0.1

topology_template:

 node_templates:

 dummy-server:

 type: openbaton.type.VNF

 properties:

 vendor: Fokus

 version: 0.1

 endpoint: dummy

 type: server

 configurations:

 name: server-configurations

 configurationParameters:

 SoftFIRE

 - key: value

 - key2: value2

 deploymentFlavour:

 - flavour_key: m1.small

 requirements:

 - vdu: VDU1

 interfaces:

 lifecycle:

 INSTANTIATE:

 - install.sh

 - install-srv.sh

 dummy-client:

 type: openbaton.type.VNF

 properties:

 ID: x

 vendor: Fokus

 version: 0.1

 type: client

 deploymentFlavour:

 - flavour_key: m1.small

 endpoint: dummy

 requirements:

 - vdu: VDU2

 interfaces:

 lifecycle: # lifecycle

 INSTANTIATE:

 - install.sh

 CONFIGURE:

 - server_start-clt.sh

 VDU1:

 type: tosca.nodes.nfv.VDU

 properties:

 scale_in_out: 1

 artifacts:

 VDU1Image:

 type: tosca.artifacts.Deployment.Image.VM

 file: ubuntu-14.04-server-cloudimg-amd64-disk1

 VDU2:

 type: tosca.nodes.nfv.VDU

 properties:

 scale_in_out: 2

 requirements:

 - virtual_link: CP2

 artifacts:

 VDU1Image:

 type: tosca.artifacts.Deployment.Image.VM

 file: ubuntu-14.04-server-cloudimg-amd64-disk1

 CP1:

 type: tosca.nodes.nfv.CP

 properties:

 floatingIP: random

 requirements:

 SoftFIRE

 - virtualBinding: VDU1

 - virtualLink: private

 CP2: #endpoints of VNF2

 type: tosca.nodes.nfv.CP

 requirements:

 - virtualBinding: VDU2

 - virtualLink: private

 private:

 type: tosca.nodes.nfv.VL

 properties:

 vendor: Fokus

relationships_template:

 connection_server_client:

 type: tosca.nodes.relationships.ConnectsTo

 source: dummy-server

 target: dummy-client

 parameters:

 - private
Figure 3. Code Snippet 1 - A sample NSD in YAML format.

Using the YAML format, the NSD is essentially human-readable file, and most of its attributes
are self-explanatory. For more information about each attribute, there is documentation at the
Open Baton website [36].

As presented in Figure 3, the NS descriptor for an NS allows an experimenter to declare a
section with all the parameters that need to be provided at NS instance creation time, which
will then be referenced and used as environment variables in the lifecycle scripts of the VNF(s)
of that NS.

When a VNF needs to know some attributes of another VNF in an NS, the experimenter must
declare a ‘relationships_template’. To explain this concept, in the following example, two VNFs
are considered: a client VNF (VNF-A) and a server VNF (VNF-B), as shown in Figure 4. In this
example, one of VNF-A’s parameter , i.e. its IP address, is required by VNF-B, so that it can be
used when VNF-B is started. This is a typical example of dependency between two VNFs, in this
case VNF-B depends on VNF-A’s parameter, and VNF-A is the “source” of the parameter which
is needed and hence is “targeted at“ VNF-B.

Figure 4. VNF Dependencies

To support ease of programming, Open Baton already provides three out-of-the-box
dependency parameters, as listed in Table 4.

 SoftFIRE

Table 4. OpenBaton's out-of-the-box dependency parameters.

Out-of-the-box-
parameter

Usage of variables in scripts Value

The IP address $< network_name >

The IP address assigned to the virtual
machine belonging to the network with
name

The floating IP
address

$< network_name >_floatingIp

The floating IP address assigned to the
virtual machine belonging to the network
with name

The hostname $hostname
The hostname assigned to the virtual
machine

3.1 VNF lifecycle management

A powerful programmability feature provided by the Open Baton orchestrator is the VNF
Lifecycle management, which allows to declare and run scripts to manage and control lifecycle
events VNFs.

According to the ETSI MANO specification [34][42], a VNF has the following lifecycle events:

Table 5. VNF lifecycle events, as defined by ETSI.

Lifecycle event Description

INSTANTIATE The instantiation of the corresponding VNF.

CONFIGURE

This lifecycle event happens after VNF instantiation, and is
necessary for specific configuration tasks that can only be
performed after the VNF starts. For instance, if the VNF

depends on other VNFs, and needs to fetch their parameters
that are only available after the VNF has been instantiated

(e.g. IP addresses).

START This event occurs after the instantiation and configuration.

STOP
This event occurs during the stopping of the corresponding

VNF.

TERMINATE
This event occurs during the termination of the corresponding

VNF.

SCALE_IN
When the VNF is the target of a VNF component (VNFC) on

which a scale-in operation is performed.

SCALE_OUT
When the VNF is the target of a VNFC on which a scale-out

operation is performed.

The use of the correct scripts in every lifecycle event of a VNF makes it possible to fully
automate the creation of the VNF, and the graceful termination of the VNF. In particular, the
SCALE_IN is a key status that must be considered in cases where the VNF is a cluster
composed of many VNF components (VNFC).In this lifecycle event, before terminating one of
the VNFCs, it is possible to notify all the VNFCs that are part of the cluster, notifying that the
particular VNFC will no longer be available. For example, if the VNF is a Cassandra cluster [37],
before terminating one node of the VNFCs, it is necessary to gracefully remove that particular

 SoftFIRE

VNFC (a node in the cluster) from the cluster in order to be able to move all its data to the
other VNFCs (the remaining set of nodes in the cluster).

3.2 Using software configuration and management tools

The correct method to setup an experimenter VNF is to create all associated VMs from a
generic image, like the Ubuntu 16.04, and then make sure that each instance installs and then
configures whatever software is required. This can be achieved with bash scripting, yet
SoftFIRE strongly recommends to use configuration management tools, such as puppet or
ansible, which are more user-friendly than bash scripting. The NFVO used in SoftFIRE is fully
compatible with these tools; all that is needed to put Puppet Manifest or Ansible Playbook
files inside the “scripts” folder (please see Code Snippet 1 in Figure 3) and then apply them
with just a one-line script.

In the following, an example is provided for the use of Ansible.

3.2.1. Setting up a web server VNF using Ansible

The following example demonstrates how to setup a VNF called ‘WebServerVNF’, and then
configure it as a web server using an Ansible playbook in yaml format.

 WebServerVNF:

 type: openbaton.type.VNF

 properties:

 ID: x

 vendor: Fokus

 version: 0.1

 type: WebServerType

 deploymentFlavour:

 - flavour_key: m1.medium

 endpoint: WebServer

 requirements:

 - vdu: WebServerVDU

 interfaces:

 lifecycle: # lifecycle

 INSTANTIATE:

 - apply-webserver-ansible-playbook.sh

Figure 5. Code Snippet 2 - WebServer VNF.

The Ansible playbook yaml file (see Figure 7) as well as the one-line script (see Figure 6) that
runs it will then be placed inside the CSAR package, in the folder called
scripts/WebServerType. The following are these two files to be included in the
experiment CSAR package:

• apply-webserver-ansible-playbook.sh

• webserver-playbook.yaml

#!/bin/bash

ansible-playbook -i "localhost," -c local webserver-playbook.yml

Figure 6. Code Snippet 3 - The one-line script that runs the Ansible playbook for the web server.

 SoftFIRE

- hosts: local

 tasks:

 #Install Apache2 and notify the handler StartApache2

 - name: Install Nginx

 apt: name=apache2 update_cache=yes state=latest

 notify:

 - StartApache2

 #Clone git repo to apache2 www folder

 - name: Git clone

 git: >

 repo: 'https://mygit.example.org/path/to/repo.git'

 dest: /var/www

 handlers:

 #Ensure the service Nginx is running and enabled

 - name: StartApache2

 service: name=apache2 state=started enable=true

Figure 7. Code Snippet 4 - Ansible playbook yaml file contents, to create a web server VNF.

4 NFV Orchestrator Extensibility

Open Baton NFV orchestrator has a modular architecture that can be easily extended for
supporting various use cases. All its components communicate through a RabbitMQ Messaging
service. The Open Baton architecture is shown in Figure 8.

SoftFIRE experimenters have the opportunity to use all the features provided by the NFVO and
its modules, such as the Autoscaling Engine or the Fault Management System. Some
experimenters in the Waves of Experiments [38] on the SoftFIRE platform have also extended
these modules, e.g. in the case of the Autoscaling Engine, and experiment deployed a new
module based on machine learning algorithms.

 SoftFIRE

Figure 8. Open Baton Architecture.

Extension of the orchestrator can be accomplished using the Open Baton SDKs to develop new
modules or to extend the already existing ones. Below is the list of all Open Baton SDKs:

Table 6. Open Baton SDKs for extending the orchestrator with new modules or extending the already
existing modules.

SDK name Description gradle artifact

NORTHBOUND
SDK

It is used by all the OpenBaton modules like
the Fault Management (FM) System and the
Auto-scaling (AS) Engine. It allows to create a
client that can receive events from the Open
Baton RabbitMQ Messaging Service and
execute actions triggered by the events.

org.openbaton:sdk

VIM DRIVER SDK

It is used to implement new drivers to
instantiate VNFs on a new VIM. It has been
used to implement the Openstack [39] VIM
driver or Amazon VIM driver. It provides an
abstract class with all the methods that must
be implemented.

org.openbaton:plugin-
sdk

VNFM SDK
It can be used to develop a new VNF Manager
to suite the specific needs of a VNF.

org.openbaton:vnfm-
sdk

 SoftFIRE

5 SDN Controller Access

The Ericsson and FOKUS component testbeds in SoftFIRE each have an SDN controller available
to SoftFIRE experimenters, to provide a more fine-grained programmability of the open virtual
switches [40] that connect the VMs. The Ericsson testbed uses the OpenDaylight SDN
controller [15] which is one of the most popular open source SDN controllers. The FOKUS
testbed leverages on OpenSDNCore [18] as its SDN controller.

An experimenter accessing the SDN controller can implement advanced networking features.
For instance, the experimenter can implement a mirroring feature to dump the
incoming/outgoing packets of a VNF, or dynamic packet diversion based on a set of flow-
match criteria defined according to the OpenFlow protocol. Both SDN and OpenSDNCore
controllers can be programmed with HTTP requests, for the Ericsson testbed the experimenter
can access the REST API of Opendaylight’s OpenFlow plugin [17]. OpenSDNCore provides a
JSON-RPC interface.

As documented in SoftFIRE online documentation [41] after an experimenter requests access
to the SDN controller, three flow tables are assigned to the experimenter, and all the traffic of
the experimenter’s VMs pass through the first assigned table. This is illustrated in Figure 9. In
this way, the experimenter can edit/add all the flows regarding only the VMs belonging to the
experimenter. This mechanism ensures tenant isolation in the SDN space. In SoftFIRE, the flow
redirection mechanism was implemented in the SDN Manager, and is coupled with an ODL
Proxy and an Open SDN Core proxy, which are in charge of filtering HTTP requests sent to the
ODL and Open SDN Core, respectively. Such filtration is necessary to ensure that an
experimenter’s HTTP request is only for the tables assigned to that experimenter, and to avoid
any potential malicious activity.

Figure 9. OpenFlow tables assigned to an experimenter.

5.1 Openstack SFC

Besides the SDN controllers described in Section 5, another feature offered by SoftFIRE to
control an experimenter’s traffic flows is provided by the ADS component testbed, which are

 SoftFIRE

the Openstack Service Function Chain (SFC) modules [42]. Service function chaining extension
for OpenStack Networking can be found in [43], and contributor API are in [44]. This solution
allows experimenters to define service function chaining with a higher abstraction layer than
the SDN controllers. Using flow classifiers with some flow matching rules based on packet
attributes, experimenters can change packet flow descriptions, for example when suspicious
traffic from an IP address is detected, it can be dynamically redirected to another VNF that can
check the suspected traffic using Deep Packet Inspection (DPI) tools.

6 Extending the SoftFIRE Middleware

SoftFIRE provides all of its middleware source code on publicly available github repositories
[45] in order to allow future developments and reuse of the code on similar experimentation
platforms. All the middleware managers were built from python softfire-sdk, which is publicly
available on github as source code [46] and also on PyPi Python Packages Repository [47] as
binary.

Figure 10 shows the interactions between the SoftFIRE components and each Resource
Manager.

The platform can be extended by adding custom manager software.

In order to develop your own manager software, you need to install the sdk with the
following command:
$ pip install softfire-sdk

The new manager needs to extend the abstract class AbstractManager with methods that
implement the message calls shown in Figure 10.

 SoftFIRE

Figure 10. SoftFIRE Resource Manager Generic Sequence Diagram (between two Resource Managers:
X and Y)

 SoftFIRE

7 Conclusions

Extensibility and programmability are the two key concepts which form the foundations of the
approach in building the SoftFIRE platform. Programmability is pervasive in the project from
many points of view. An experimenter can automate their deployments using the provided API
and templates, or can extend the platform with newly implemented modules which are not
provided by the middleware; for instance, a machine-learning based auto scaling engine has
been built by an experimenter, which works with the middleware software. The platform uses
many programming languages like Java, Python, Javascript, various integrations tools like
Jenkins, and the open source infrastructure manager Openstack that has become the de-facto
standard for NFV platforms. However, NFV technologies are still evolving, and are influenced
by new technologies that emerge from the datacentre and IT markets. Such influence from
datacentre markets has been at a more rapid pace than what has been observed in the
telecommunications market. This has been particularly noticed during the lifetime of the
project, when new tools have been tested by experimenters. The modular structure of the
SoftFIRE middleware has enabled experimenters to implement their requested functionalities,
and is envisioned to be a generic approach for future NFV federation projects. The
fundamental aspects of the project has been the use of free open source software, and their
integration, whilst also enabling programmability of the platform to users.

 SoftFIRE

Bibliography

[1] “Network Function Virtualisation: State-of-the-Art and Research Challenges”, Rashid

Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, Raouf Boutaba, IEEE

Communications Surveys & Tutorials, vol 18, no 1, 236-262, September 2015.

[2] "Network Functions Virtualisation— Introductory White Paper", ETSI, 22 October 2012,

retrieved 20 June 2013.

[3] “Software-Defined Networking: A Comprehensive Survey”, Diego Kreutz, Fernando M. V.

Ramos, Paulo Esteves Veríssimo, Christian Esteve Rothenberg, Siamak Azodolmolky, Steve

Uhlig, Proceedings of the IEEE, vol 103, no 1, pp 14-76, January 2015.

[4] EU SoftFIRE project, https://www.softfire.eu/

[5] SoftFIRE Middleware, http://docs.softfire.eu/softfire-middleware/

[6] The TOSCA Cloud Service Archive (CSAR), https://www.oasis-

open.org/committees/download.php/46057/CSAR%20V0-1.docx

[7] Zabbix, http://www.zabbix.com/

[8] Iperf, https://iperf.fr/

[9] Open5GCore, https://www.open5gcore.org/

[10] OpenEPC project, https://www.openepc.com/

[11] Open IMS Core, http://www.openimscore.com/

[12] PacketCable, https://www.cablelabs.com/security-docs/packetcable/

[13] Fraunhofer Fokus, FUSECO Playground,

https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/fuseco_playground

[14] 5G Innovation Centre, University of Surrey, http://www.surrey.ac.uk/5gic

[15] OpenDaylight, https://www.opendaylight.org/

[16] OpenFlow, https://www.opennetworking.org/sdn-resources/openflow

[17] OpenDaylight OpenFlow Plugin,

https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:User_Guide

[18] Open SDN Core, https://www.opensdncore.org/

[19] Uncomplicated Firewall, https://help.ubuntu.com/community/UFW

[20] Suricata, https://suricata-ids.org

[21] Zabbix API, https://www.zabbix.com/documentation/3.4/manual/api

[22] UFW API, https://github.com/softfire-eu/softfire-

eu.github.io/blob/sitecode/docs/etc/firewall_api.adoc

[23] Suricata log API,

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Log_API

[24] Suricata packet acquisition API,

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Packet_Acquisition_API

[25] Pfsense API, https://github.com/ndejong/pfsense_fauxapi

[26] YAML, http://yaml.org/

[27] TOSCA, http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rashid%20Mijumbi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Rashid%20Mijumbi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Joan%20Serrat.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Juan-Luis%20Gorricho.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Niels%20Bouten.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Filip%20De%20Turck.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Raouf%20Boutaba.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Diego%20Kreutz.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fernando%20M.%20V.%20Ramos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Fernando%20M.%20V.%20Ramos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paulo%20Esteves%20Ver.AND..HSH.x00ED;ssimo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christian%20Esteve%20Rothenberg.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Siamak%20Azodolmolky.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Steve%20Uhlig.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Steve%20Uhlig.QT.&newsearch=true
https://www.softfire.eu/
https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
http://www.zabbix.com/
https://www.open5gcore.org/
https://www.openepc.com/
http://www.openimscore.com/
https://www.cablelabs.com/security-docs/packetcable/
https://www.fokus.fraunhofer.de/go/en/fokus_testbeds/fuseco_playground
http://www.surrey.ac.uk/5gic
https://www.opendaylight.org/
https://www.opennetworking.org/sdn-resources/openflow
https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:User_Guide
https://www.opensdncore.org/
https://help.ubuntu.com/community/UFW
https://suricata-ids.org/
https://www.zabbix.com/documentation/3.4/manual/api
https://github.com/softfire-eu/softfire-eu.github.io/blob/sitecode/docs/etc/firewall_api.adoc
https://github.com/softfire-eu/softfire-eu.github.io/blob/sitecode/docs/etc/firewall_api.adoc
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Log_API
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Packet_Acquisition_API
https://github.com/ndejong/pfsense_fauxapi
http://yaml.org/
http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

 SoftFIRE

[28] Experiment definition in SoftFIRE, http://docs.softfire.eu/experiment-definition/

[29] gRPC, Google, [Online]. Available at: https://grpc.io/

[30] pfSense, [Online]. Available at: https://www.pfsense.org/

[31] Assembly Data System (ADS) NFV lab testbed, https://www.assembly.it/

[32] Service function chaining architecture, IETF, [Online] Available at:

https://tools.ietf.org/html/rfc7665

[33] Service function chaining, OPNFV, [Online], Available at:

https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home

[34] ETSI MANO specification, http://www.etsi.org/deliver/etsi_gs/NFV-

MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

[35] OpenBaton, https://openbaton.github.io/

[36] Network Service Descriptors in OpenBaton,

https://openbaton.github.io/documentation/ns-descriptor/s

[37] Apache Cassandra, http://cassandra.apache.org/

[38] SoftFIRE project experiment waves, https://www.softfire.eu/open-calls/

[39] OpenStack open source cloud computing software, https://www.openstack.org/

[40] Open Virtual Switch, http://openvswitch.org/

[41] SoftFIRE online documentation, docs.softfire.eu

[42] OpenStack service function chaining modules,

https://docs.openstack.org/ocata/networking-guide/config-sfc.html

[43] https://docs.openstack.org/networking-sfc/latest/

[44] https://docs.openstack.org/networking-sfc/latest/contributor/api.html

[45] SoftFIRE Middleware Github Repositories, https://github.com/softfire-eu

[46] SoftFIRE SDK Github Repository, https://github.com/softfire-eu/softfire-sdk

[47] SoftFIRE SDK PyPi Package Repository, https://pypi.python.org

http://docs.softfire.eu/experiment-definition/
https://grpc.io/
https://www.pfsense.org/
https://tools.ietf.org/html/rfc7665
https://wiki.opnfv.org/display/sfc/Service+Function+Chaining+Home
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://openbaton.github.io/
https://openbaton.github.io/documentation/ns-descriptor/
http://cassandra.apache.org/
https://www.softfire.eu/open-calls/
https://www.openstack.org/
http://openvswitch.org/
https://docs.openstack.org/ocata/networking-guide/config-sfc.html
https://docs.openstack.org/networking-sfc/latest/
https://docs.openstack.org/networking-sfc/latest/contributor/api.html
https://github.com/softfire-
https://github.com/softfire-eu/softfire-
https://pypi.python.org/

 SoftFIRE

List of Acronyms and Abbreviations

Acronym Meaning

3GPP Third Generation Partnership Project

5G Fifth Generation Mobile Network

5GIC 5G Innovation Centre

ADS Assembly Data System

API Application Programming Interface

AS Auto-Scaling

CSAR Cloud Service ARchive

CP Connection Point

CPN Control Plane Node

CPU Central Processing Unit

DPI Deep Packet Inspection

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

EU European Union

FM Fault Management

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IMS IP Multimedia Subsystem

IP Internet Protocol

IT Information Technology

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MANO Management and Orchestration

NFV Network Function Virtualisation

NFVI Network Function Virtualisation Infrastructure

NFVO Network Function Virtualisation Orchestrator

NGN Next Generation Networks

NIPS Network Intrusion Prevention System

NS Network Service

 SoftFIRE

NSD Network Service Descriptor

ODL OpenDaylight

OS Operating System

OVS Open Virtual Switch

PoP Point of Presence

RAN Radio Access Network

REST Representational State Transfer

RPC Remote Procedure Call

SCTP Stream Control Transmission Protocol

SDK Software Development Kit

SDN Software Defined Network

SEM SoftFIRE Experiment Manager

SFC Service Function Chaining

SFCO Service Function Chaining Orchestrator

SIP Session Initiation Protocol

TCP Transport Control Protocol

TISPAN
Telecoms & Internet converged Services & Protocols for Advanced
Networks

TOSCA Topology and Orchestration Specification for Cloud Applications

UDP User Datagram Protocol

UE User Equipment

UFW Uncomplicated Firewall

URL Uniform Resource Locator

VDU Virtual Deployment Unit

VIM Virtual Infrastructure Manager

VL Virtual Link

VM Virtual Machine

VNF Virtual Network Function

VNFC Virtual Network Function Component

VNFM Virtual Network Function Manager

YAML YAML Ain’t Markup Language

 SoftFIRE

Disclaimer

This document contains material, which is the copyright of certain SoftFIRE consortium parties, and may not be
reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from the proprietor of
that information.

Neither the SoftFIRE consortium as a whole, nor a certain part of the SoftFIRE consortium, warrant that the
information contained in this document is capable of use, nor that use of the information is free from risk, accepting
no liability for loss or damage suffered by any person using this information.

SoftFIRE has received funding from the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement no. 687860.

