

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 1 of 18

Software Defined Networks and Network Function Virtualisation
Testbed within FIRE+

White Paper
 SoftFIRE Approach to Experiment Management: Why and

How

Jun 2017

Disclaimer
This document contains material, which is the copyright of certain SoftFIRE consortium parties,
and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from
the proprietor of that information.

Neither the SoftFIRE consortium as a whole, nor a certain part of the SoftFIRE consortium,
warrant that the information contained in this document is capable of use, nor that use of the
information is free from risk, accepting no liability for loss or damage suffered by any person
using this information.

SoftFIRE has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no. 687860.

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 2 of 18

Table of Contents

Table of Contents .. 2

List of Figures .. 3

1 Introduction: Why do we need a Framework for Experimentation...................................... 4

2 Why we started with the FIRE framework: FIRE APIs, what are FIRE APIs 5

3 Limitations encountered ... 7

3.1 Feedback from SoftFIRE experimenters (call1) ... 8

3.2 Experiences from other (FIRE) projects... 8

4 A New Approach more NFV/SDN oriented ... 9

4.1 The NFV/SDN enabler modelling language: TOSCA .. 9

4.2 The SoftFIRE Middleware .. 10

4.2.1. NFV Manager ... 12

4.2.2. SDN Manager .. 13

4.2.3. Physical Device Manager ... 13

4.2.4. Security Manager .. 13

4.2.5. Monitoring resources .. 15

4.3 Experiment Definition ... 15

4.3.1. TOSCA-Metadata ... 15

4.3.2. Definitions ... 15

4.3.3. Files .. 16

5 Conclusion ... 16

Bibliography .. 17

List of Acronyms and Abbreviations .. 17

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 3 of 18

List of Figures

Figure 1: SoftFIRE initial Architecture (integrated with FITeagle and jFED).................................. 6

Figure 2: SoftFIRE middleware architecture ... 11

Figure 3. Definition of the NfvResource in TOSCA language... 13

Figure 4. SecurityResource NodeType definition in TOSCA .. 15

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 4 of 18

1 Introduction: Why do we need a Framework for

Experimentation

The SDN/NFV combination promises to be the basis for a deep transformation in the
Telecommunications industry. Virtualization offers the possibility to introduce virtualized
function for the execution of provision of network services. This means that the entire cloudified
infrastructure of an Operator can be virtualized and extended by means of programmability and
APIs. As a complement to this capability, the Software Defined Networking, SDN, offers the
unprecedented capability to program connectivity resources. This has the consequence that
networks and resources can be created obeying specific goals. The further virtualization of SDN
resources creates additional value because the control and programmability of network
resources goes hand in hand with the possibility to virtualize the different networks and to
provide to final customers new controls and customization of network services. In addition,
network functions can be segmented and could create “slices” of functionalities for supporting
specific application domains.

The relation between NFV and SDN is quite interesting and the industry is striving for a better
integration between the two in order to make them enablers for the 5G infrastructure. In the
meantime, the two technologies themselves have to be consolidated in order to reach a level of
reliability and efficiency that allows their industrial usage. Their integration is not fully achieved
and SDN is mainly supporting the communications need of a single installation of OpenStack.
The global interconnectivity and segmentation of APIs to be exposed to different programmers
is under development and it is not consolidated yet. SoftFIRE will try to integrate in the future.

In order to assess and usage the NFV/SDN technology, SoftFIRE has put in place a Federated
infrastructure that aims at assessing and proving the degree of interworking, programmability
and security that the solutions have achieved.

NFV and SDN are naturally prone to require distributed processing capabilities. Even in a single
testbed implementation, different interacting machines are used to support the exploitation of
the virtualization and control functions. The federation of different distributed systems poses
additional issues and challenges in terms of interworking, programmability and security because
homogeneous execution and management rules have to be granted over different
heterogeneous basic (hardware and software) infrastructures.

Designing, programming, executing and monitoring different (virtualized) distributed
components requires an efficient orchestration engine and the capability to easily satisfy
needed deployment, monitoring, execution and location requirements of the functionalities.

This makes the task of programming and deploying software on virtualizing interworking
platform a complex one. For this reason, some tools for supporting the designers of the software
can help in defining the required deployment and execution configuration. The challenge to
easily design, deploy, instantiate and monitor the distributed applications over virtualized

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 5 of 18

federated infrastructure is even exacerbated in a context as SoftFIRE. As said, one of the
requirements is to support different basic technologies, and in addition, each component
testbed may provide functionalities that are very specific to the local hardware infrastructure,
or they may provide specific services non-replicable elsewhere. This is a problem in itself (even
if the SoftFIRE platform was a single user platform) that is further complicated by the fact that
SoftFIRE is multitenant. Different Experiments will run in parallel and will have different and
sometimes competing requirements in terms of usage of the platform and its resources. It is
important to understand who is requesting which resource and for how long, and once the
resource is allocated and ready to execute, it is important to monitor its usage and account for
it.

The focus of SoftFIRE is mainly evolution to 5G and its enabling technologies (NFV/SDN
essentially), so the requirements for resource descriptions and usage clearly fall in specific
domain of future telecommunications.

In order to support these and other functionalities, SoftFIRE needs a set of flexible tools that can
be offered to experimenters in order to support them during the life cycle of their experiment.
These tools have to differentiate between different users, they have to clearly segment and
support a specific execution environment, they have to allow for exposition of interfaces of
existing services and for access to a repository of pre-existing functions and services that can be
tied together by the experiment in order to create compelling applications. The experimenters
should also be free to decide what functions to instantiate and where and when to instantiate
them.

A graphical user interface would clearly be an advantage for easing the chaining of
functionalities and their distribution over the platform. Moving virtual network function over
the infrastructure will be a major advantage for experimenters that could find in this way better
configurations for their deployment.

The availability of existing tools able to offer these functionalities into a specific environment
tailored for SDN/NFV resources is clearly an advantage and probably an enabler for providing
these solution on an industrial level.

2 Why we started with the FIRE framework: FIRE

APIs, what are FIRE APIs

In a first phase of its lifecycle, SoftFIRE needed to focus on achieving and guaranteeing the
interoperability and interworking of very different testbeds. Much of the work has been devoted
to this daunting task. It was clear since the definition phase of the project that relying on existing
tools could cut down the development time and would allow the project to focus on relevant
tasks. From the “platform” perspective”, the requirements were clearly identifiable. The tools
should provide:

● User Authentication

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 6 of 18

● User Authorization

● Resource discovery

● Experiment definition

● Resource reservation

● Resource provisioning

● Experiment control during execution

● Experiment Monitoring

And the choice of FIT Eagle (ref) and jFED (ref) was straightforward. These tools also guarantee
a level of conformance to the entire FIRE action and the potential possibility to ease the usage
of other FIRE platforms.

The project started the integration of these tools into the SoftFIRE middleware infrastructure in
order to offer and exploit their functionalities to experimenters of the first SoftFIRE Open Call.

The adopted configuration within the SoftFIRE middleware is represented in Figure 1: SoftFIRE
initial Architecture (integrated with FITeagle and jFED).

Figure 1: SoftFIRE initial Architecture (integrated with FITeagle and jFED)

From an architectural view point, it can be appreciated that SoftFIRE had to complement the
tools with other functionalities such as the Software Portal. This somehow created some
idiosyncrasies with respect to the middleware architecture definition. In addition, some
overlapping of functionalities was evident due to some replication of resource management
between the FIRE tools and the MANO Orchestrator definition.

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 7 of 18

During the execution of the first Open Call, the tools did not fully maintain their promise for
easing the work of experimenters. They showed issues in properly representing and dealing with
NFV resource (NFS), while they were properly usable for more basic resources (e.g., VMs). In
addition, some of the SoftFIRE experimenters were ready to directly use some of the APIs
provided by Open Baton. This has led the project to reconsider the usage of the tools and to
develop solutions more readily integrated and usable within a NFV/SDN context.

The new set of functionalities (extended also to support new functions related to monitoring,
security, integration of specific physical resources) has been collected under the definition of a
new software framework that will leverage and will be fully integrated with the NFV/SDN
orchestration. The framework is considered as a valuable contribution to the entire NFV/SDN
community (one of the goal of SoftFIRE is to serve as an enabler for the technological evolution
of this sector) and possibly a contribution to extend and integrate into FIRE these resources and
capabilities.

The goal of this SoftFIRE white paper is to share within the largest community possible the
reasoning that have yield the project to endeavor into the development of an Experiment
Manager fully devoted to NFV/SDN/5G technologies and the high level design of it. We believe
that this discussion is relevant for the NFV/SDN/5G community and we offer our experience and
solutions to the discussion and evaluation of other projects or initiatives in order to determine
if this is meaningful and viable approach.

3 Limitations encountered

During the First year of the SoftFIRE project a FIRE compliant architecture has been implemented
for exposing resources available at each individual testbed.

The introduction of the FIRE APIs has been needed only for maintaining compatibility with the
existing FIRE tools, since most of the functionalities required for building up the federation were
already present in Open Baton.

Furthermore, providing the experimenters access to the infrastructure only via the FIRE tools
limited the set of functionalities compared to the extended set of APIs provided via the Open
Baton NFVO. For instance, scaling, one of the most important NFV mechanisms, would require
the execution of a set of update functionalities on the existing experiment, while in Open Baton
it would only require the execution of a single API. In addition to this, there are use cases that
require the instantiation of additional sets of components that cannot be realized without the
direct access to the Open Baton APIs. Nevertheless, the Open Baton API does not provide
support for all of the Lifecycle events specified by the SFA API that are used by FIRE. These
missing features need to be implemented as a thin layer inside the SoftFIRE middleware. Later
in this Document a new architecture providing the missing features is introduced.

In SFA resources are described via the Resource Specification (RSpec) language. With those
RSpec definitions, resources could become part of a catalogue exposed to experimenters. From
the experimenter’s point of view, a SoftFIRE experiment definition is a two-step approach. First,
the NS/VNF is defined following the NFV MANO specification, whereas the provisioning of the
experiment is then done via RSpec language. Feedback from the Experimenters was asked for a
simplification of this process into an better integrated approach using only a single specification
language.

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 8 of 18

3.1 Feedback from SoftFIRE experimenters (call1)

During the first wave of experiments of the SoftFIRE project the experimenters gave a lot of
feedback regarding the Usability of the Platform. This feedback concludes that the FIRE
approach and especially the SFA API was not flexible enough to be used for the move to NFV
paradigms.

One major feedback is the complexity of the Error reporting during the Development of own
NFV components. The SoftFIRE multi-layer architecture introduces several integration points
which reduce the reliability of the whole system. Furthermore, additional effort is required for
adapting the information while passing it from one level to the other. It is important to underline
that in SoftFIRE the first level federation is already achieved at the infrastructure level by using
OpenStack as Virtual Infrastructure Manager.

Troubleshooting and Supporting the Experimenters during the phase of experiment
development caused a lot of effort by both the SoftFIRE team and the Experimenters. Of course
this is not an issue if premade NFV packages are used, which were already customized and tested
to work with the platform.

As the Experimenters are already using the MANO specifications to develop their NFVs it is more
convenient for them to directly utilize the MANO APIs to also control their experiment lifecycle.

3.2 Experiences from other (FIRE) projects

The FIRE initiative included many Projects that contributed to the field of federated Testbeds.
Some of them where following the SFA approach for Experiment reservation and control, while
others are giving direct access to the individual API of the testbed. However based on our
knowledge there are very limited number of commercial SFA-enabled federated testbeds.

BonFIRE1

The BonFIRE project does not use SFA, instead is uses a custom API based on OCCI (Open Cloud
Computing Interface) to define and control an Experiment on their distributed Testbed
infrastructure. The so-called BonFIRE API utilizes REST and XML to define an experiment
composed of multiple resources as nodes. The project was very successful in respect of
sustainability and was translated into the BonFIRE Foundation, which will continue to operate
the BonFIRE multi-site Cloud testing facility.

Fed4FIRE2

The Fed4FIRE created a federation containing most of the FIRE based projects across Europe to
made the testbed facilities available using a common access point. Some of the federated
projects are using SFA based tools to control their experiments. The developers of the jFED tool,
iMinds where part of the project, which resulted in good integration and customization of the
tool towards the use-cases of the project.

1 http://www.bonfire-project.eu
2 https://www.fed4fire.eu

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 9 of 18

Trescimo3

The Trescimo Project provided a federated Testbed environment for M2M communication in
the field of Smart Cities in South Africa and Europe. For the Orchestration and Management the
predecessor of OpenBaton, OpenSDNCore Orchestrator was used together with FITeage. The
architecture already utilized the TOSCA language to describe the Experiments. (1)

OPNFV: Pharos4

Besides being not a FIRE project the Pharos Project deals with developing an OPNFV lab
infrastructure that is geographically and technically diverse. It provides guidelines and
Infrastructure to setup and manage industry-oriented Testbeds with focus on SDN and NFV.
Depending on the specific rules for each lab, Experimenters will get direct access to the
underlying OpenStack and OpendayLight API using secured OpenVPN access. This approach was
very well adapted by the community which is formed by a large number of companies that are
providing testbeds to the project.

4 A New Approach more NFV/SDN oriented

The Slice-based Federation Architecture (SFA) 2.0 (2) high level interface specification draft was
published in July 2010, before the imminence of current technologies such as Network Function
Virtualization and Software Defined Networking. As defined in the draft, a “resource (RSpec)
describes a component in terms of the resources it possesses and constraints and dependencies
on the allocation of those resources” and the lifecycle is defined elsewhere.

In previous projects, as stated in the above sections, i.e. FED4FIRE5, the resource definition was
done in different steps: the RSpec defined the actual resource to be used and the physical
location of it while the “automated” execution of the experiment is defined through an OEDL
script, executed via OMF6.

This example shows that the concept of lifecycle of the experiment has gained a more complex
definition. Nowadays, the genre of resources could widely vary from each other. SFA was
designed for mainly provisioning compute resources (physical or virtual) to the experimenter.
The experimenter was then in charge of handling the lifecycle of the actual experiment, via SSH
or in some cases, via OEDL script, if the platform was providing OMF support.

SoftFIRE, aware of the lessons learned from the past, must adapt its structure to the new
technical requirements coming from the new generation of experimenters, maintaining
implemented the FIRE functional requirements that are the concrete definition of a FIRE based
project.

4.1 The NFV/SDN enabler modelling language: TOSCA

The recent evolution in the technology state of the art brought the Experimenters to include in
their experiments and to require from the used platform some key NFV/SDN functionalities. The

3 https://trescimo.eu
4 https://wiki.opnfv.org/display/pharos/Pharos+Home
5 https://www.fed4fire.eu
6 http://omf.mytestbed.net/projects/omf/wiki/An_Introduction_to_OMF

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 10 of 18

SoftFIRE platform intends to meet these requirements, while keeping on provisioning the FIRE
required features.

The OASIS industry group defined in November 2013 a standard called Topology and
Orchestration Specification for Cloud Applications (TOSCA) that aims to provide an efficient and
precise tool able to model the cloud applications and associated IT services having a particular
focus on telecom operators requirements. This industry related standard is suitable for modeling
NFV and SDN applications (described in addition in the TOSCA Simple Profile for Network
Functions Virtualization (NFV) Version 1.0 specification draft) (3) and it has been chosen by the
SoftFIRE consortium to be the reference modelling language for defining Experiments (Topology
Template) as a set of different kind of resources (Node Template) strictly formalized by the
SoftFIRE Node Type definition7.

As a matter of fact, TOSCA excellently adapts to experiment definition purposes, maintaining
the new NFV/SDN requirements met, keeping abstract the experiment configuration and making
the definition highly portable.

4.2 The SoftFIRE Middleware

The decision of adopting a new information model for the northbound API inducted the SoftFIRE
Middleware to evolve in order to meet all the SDN/NFV requirements and all the functional
requirements that are embedded in a FIRE project. The Middleware was redesigned in an
extremely modular architecture, defined in Figure 2, allowing the platform to handle an infinite
number of different resource types.

7 http://docs.softfire.eu/etc/softfire_node_types.yaml

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 11 of 18

Figure 2: SoftFIRE middleware architecture

Albeit the northbound API is TOSCA standard, the experimenter will interface mainly with a
dashboard that has the task of simplification of the interaction with the platform. However, the
Experimenter can make use also of some CLI tools that provide more programmability to the
platform.

The Experimenter can naturally and easily extend the current platform. This is possible in many
ways:

● Extending the SoftFIRE Middleware by implementing:

○ A resource specific manager

○ An Open Baton external module

○ An Open Baton VNF Manager

○ An Open Baton Monitoring plugin

● Extending the SoftFIRE Infrastructure layer, by integrating:

○ A Openstack API compliant private cloud into the SoftFIRE infrastructure

○ A SDN Controller

○ Any non-Openstack based VIM and its Open Baton VIM Driver

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 12 of 18

As shown in Figure 2, there are different Managers. The main one is the Experiment Manager
(EM) and then there are (at the moment) five sub managers in charge of one specific kind of
resource. The resource types that are currently managed inside the SoftFIRE Middleware are
therefore five: NFV resources, SDN resources, Security resources, Physical resources and
Monitoring resources.

The Experiment Manager delegates the operations on a specific resource to a specific manager.
The foreseen operations mainly reflects the FIRE experimenter operations:

● List resources (resource discovery)

● Provide resources

● Terminate resources

● Validate resources

● Refresh resources

Thus, each manager implements these API and knows how to validate, provide and terminate
the specific resource. In addition to these functions, we also included a registration, a
deregistration and an update status method. Each manager must first register to the Experiment
Manager and provide the list of resources it is exposing. Some managers also handle some types
of resources that are not static and that change status and value after the deployment. For that
reason, an update status method can optionally be implemented by each manager and that aims
to update the status of an already deployed resource.

4.2.1. NFV Manager

The NFV Manager is in charge of managing any TOSCA node of type NfvResource. A NFV
resource represents a Network Service (NS) as defined in the ETSI NFV specification8. The TOSCA
Node Type definition is as follows:

NfvResource:

 derived_from: eu.softfire.BaseResource

 description: "Defines a NFV resoruce request in the SoftFIRE Middleware"

 properties:

 ssh_pub_key:

 required: false

 type: string

 file_name:

 required: false

 type: string

 nsd_name:

 type: string

 testbeds:

 entry_schema:

 description: "mapping between vnf types and testbed. Or 'all':<testbed_name>
for all in one"

 type: string

8 http://www.etsi.org/technologies-clusters/technologies/nfv

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 13 of 18

 type: map

Figure 3. Definition of the NfvResource in TOSCA language

Where the fields represent:

● resource_id: The resource id identifies a resource available from the resource discovery.

However, for this particular type of resource, the resource id can also not be included in

the list of available resources in case the experimenter wants to upload his own

NfvResource

● testbeds: a map where you can define the testbed where each VNF will be deployed.

● nsd_name: the name of the NS

● file_name: in case the preconfigured NS are not sufficient for your experiment you can

upload your own NS in CSAR format and place it in the Files folder. This field contains

the name of the file

The possible NSs that the platform can actually deploy is infinite, hence the NFV Manager is the
only manager able to handle a resource_id that is not included in the list of available resources.
In this specific case, the experimenter has to define the NS, following the TOSCA NFV (3) profile
and the Open Baton specification (4) and include it in the experiment definition.

4.2.2. SDN Manager

The SDN Manager is in charge of managing access to the SDN resources provided by some of the
SoftFIRE testbeds. The SDN manager keeps track of the SDN Controller API endpoints and
provides managed access to them through the SDN proxy services. It is not sustainable for an
open system like SoftFIRE to provide direct access to the SDN Controller API to the experimenter.
For that reason, the SDN Proxy filters and provides controlled access to the SDN Controller API.

4.2.3. Physical Device Manager

The Physical Device Manager (PDM) focuses its efforts on guaranteeing access to a physical
resource. Generally, most of the physical resources available in an infrastructure require the
user to physically be in the physical resource location in order to be able to use it. In the case of
these types of resources, the PDM only provides the reservation and configuration methods. In
the SoftFIRE infrastructure some physical resources, are made remotely available by a simple
dashboard, in the case of these resources, the PDM returns to the Experimenter also the access
to this dashboard.

4.2.4. Security Manager

The Security Manager inside the SoftFIRE Middleware makes available to the Experimenter a
series of security related functionalities that he might decide to include and use within his
activities on the SoftFIRE platform. Here is the list of the available features.

● The Experimenter can statically configure the SecurityResource by means of its

descriptor

○ The Experimenter can enable logs collection from his resource

○ The Experimenter can statically configure some rules on his resource

● The Experimenter can dynamically configure the resource once it has been deployed

● The Experimenter can see the resources logs in a web dashboard

● The Experimenter can perform searches among the resources logs in a web dashboard

● The Experimenter can see statistics related to the resources logs in a web dashboard

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 14 of 18

A SecurityResource is a commonly used security agent that the Experimenter can include in his
experiment. He can access and configure it through a static initial configuration, included in the
TOSCA description of the Resource, or, once deployed, through a ReST interface that exposes its
main services. The Experimenter can also ask the SecurityResource to send its log messages to a
remote log collector, which makes them available in a simple web page reserved to him. The
Experimenter could easily access it through its web browser and check the behaviour of all his
security agents, and to check the statistics. The Experimenter can obtain the SecurityResource
in two different formats:

● As an agent directly installed in the VM that he wants to monitor. The system will

provide him a script that the Experimenter has just to run inside the VM. It will be

already configured as required in the TOSCA description of the resource. The output of

the script will provide to the Experimenter information on how to access the deployed

resource (URLs, etc.)

● As a standalone VM. The SecurityResource will be deployed directly by the Security

Manager in the testbed chosen by the Experimenter. The Security Manager will take

care of the initial configuration of the resource. The Experimenter has to set up on his

own the redirection of the network traffic that he wants to control in the deployed VM

(by means of tunneling or SDN capabilities).

The SecurityResource NodeType is described as follows:

SecurityResource:

 derived_from: eu.softfire.BaseResource

 description: "Defines a Security agent to be deployed. More details on [docu_url]"

 properties:

 resource_id:

 type: string

 required: true

 testbed:

 type: string

 required: false

 want_agent:

 type: boolean

 required: true

 logging:

 type: boolean

 required: true

 allowed_ips:

 type: list

 entry_schema:

 type: string

 required: false

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 15 of 18

 denied_ips:

 type: list

 entry_schema:

 type: string

 required: false

 default_rule:

 type: string

 required: true

Figure 4. SecurityResource NodeType definition in TOSCA

4.2.5. Monitoring resources

The Monitoring Manager provides monitoring as a resource to the Experimenter. For
experimenters requiring monitoring resources, the Monitoring Manager provides a dedicated
instance of a state of the art monitoring server. All NFV resources requested by the experimenter
will be configured in order to provide monitoring information to the monitoring server. The
experimenters receive full administrations rights on the monitoring server, in order to be able
to configure it according to the specific needs of the experiment.

4.3 Experiment Definition

As explained above, the experiment is defined using the TOSCA standard. In particular, the
Experimenter has to create a CSAR9 zip file containing all the necessary files and definitions for
letting the Experiment Manager (EM) manage the resources included in the experiment.

The SoftFIRE Experiment CSAR (5) is composed by three main folders: Definitions, Files and
TOSCA-Metadata.

4.3.1. TOSCA-Metadata

The TOSCA-Metadata folder contains the TOSCA.meta file and the Metadata.yaml file. The
TOSCA.meta file must contain the reference to the experiment definition. The Metadata.yaml
contains experiment meta information regarding the name of the experiment and the start and
end date.

4.3.2. Definitions

The Definitions folder contains the experiment yaml description file that must follow a specific
structure. The SoftFIRE experiment yaml file must contain the TOSCA definition version
(“tosca_simple_yaml_1_0”) and the imports section must be specified because the EM will only
accept specific node types defined in the node type definition file10. Each node type specifies a
resource_id that must be chosen from the list of available resources (resource discovery). The
node name is arbitrary. Each node type can have some additional properties as defined in the
previous sections.

9 http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-
YAML-v1.0-csprd01.html#_Toc430015789

10 http://docs.softfire.eu/etc/softfire_node_types.yaml

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 16 of 18

4.3.3. Files

The Files folder contains an inner CSAR defining a NS as specified by the TOSCA for NFV profile11
(3). This is only used in case the NFV Resource you want to deploy is not one of the available
one. This means that the Experimenter can upload his own specific resource and be able to
deploy it in a second moment.

5 Conclusion

The goal of this White Paper is to promote within the NFV/SDN/5G community discussion and
suggestion on how to fully support the technological capabilities of these technologies by
creating a middleware capability that can be used to ease the creation, the execution and the
monitoring of relevant experiments. This extension of goals of SoftFIRE is requiring considerable
development effort and it is important to have the support of the community also for collecting
requirements or suggestion for further improvement of this effort.

It is quite relevant to create a viable and possibly extendible framework that helps in executing
experiments on this kind of platforms. The approach and the choice of open interfaces and
description languages that fully fit with NFV/SDN are considered as relevant advantage and
value by the project. The created infrastructure could be further extended by introducing new
capabilities and new resources and related solutions. The new architecture of the Experiment
Manager is general enough to include new resources that are not foreseen in the current state
of the art (meaning that new FIRE projects can use the same architecture and that same software
implemented).

In addition, it allows a lot of flexibility to Experimenters for putting together different
functionalities such as monitoring, security and last but not least SDN control capabilities. This
could provide to the experiment a rich set of functionalities. However there is not obligation on
the experiment side to use all of them at once. The different Managers can be used in a
progressive manner starting from the NFV Manager to be used for virtualized software functions
and then to extend the functionalities according to needs and ability to program and govern
them.

The intended benefits of this effort can be summarized in this way:

 Availability of a flexible and rich middleware specifically designed for managing

NFV/SDN technologies based on industry oriented open APIs (TOSCA)

 Integration of security and monitoring capabilities into the middleware framework

 Possibility of integrating also physical resources so that new resources can be added and

integrated into the platform. This could be particularly relevant for future activities

aiming at extending the platform towards a richer set of 5G network resources

 Support in terms of protocols and APIs the experimenters that choose only specific kind

of resources in a particular location for a dedicated amount of time. This gives the

flexibility to experiment in the small and then increase the number of functionalities to

be linked and used within a specific experiment and development.

11 http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 17 of 18

The SoftFIRE project is keen to receive suggestions, inputs or criticisms to the chosen approach.
We believe these topics need discussion and awareness within the growing NFV/SDN
community.

Bibliography

1. Trescimo Project. Deliverable D3.3: TRESCIMO Prototype v2. [Online] 11 2015.
https://trescimo.eu/wp-content/uploads/2015/11/D3.3_v1.0.pdf.

2. Peterson, Larry, et al. Slice-Based Federation Version 2.0. [Online] 7 2010.
http://groups.geni.net/geni/raw-attachment/wiki/SliceFedArch/SFA2.0.pdf.

3. Lipton, Paul, et al. TOSCA Simple Profile for Network Functions Virtualization (NFV) Version
1.0. [Online] 5 11, 2017. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html.

4. OpenBaton Team. OpenBaton: TOSCA virtual network function template. [Online] Jun 1,
2017. https://openbaton.github.io/documentation/tosca-vnfd/.

5. Lipton, Paul, et al. TOSCA Simple Profile in YAML Version 1.0. [Online] August 27, 2015.
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-
Profile-YAML-v1.0-csprd01.html.

List of Acronyms and Abbreviations

Acronym Meaning

5G Fifth Generation Mobile Network

API Application Programming Interface

EM Experiment Manager

MANO Management and Orchestration

M2M Machine-to-Machine

NFV Network Function Virtualisation

NFVO Network Function Virtualisation Orchestrator

ODL OpenDaylight

SDN Software Defined Network

SEM SoftFIRE Experiment Manager

TOSCA Topology and Orchestration Specification for Cloud Applications

VM Virtual Machine

VNF Virtual Network Function

VNFM Virtual Network Function Manager

VPN Virtual Private Network

SOFTFIRE White Paper – SoftFIRE Approach to Experiment Management: Why and How

May 2017 SoftFIRE Approach to Experiment Management: Why and How Page 18 of 18

	Table of Contents
	List of Figures
	1 Introduction: Why do we need a Framework for Experimentation
	2 Why we started with the FIRE framework: FIRE APIs, what are FIRE APIs
	3 Limitations encountered
	3.1 Feedback from SoftFIRE experimenters (call1)
	3.2 Experiences from other (FIRE) projects

	4 A New Approach more NFV/SDN oriented
	4.1 The NFV/SDN enabler modelling language: TOSCA
	4.2 The SoftFIRE Middleware
	4.2.1. NFV Manager
	4.2.2. SDN Manager
	4.2.3. Physical Device Manager
	4.2.4. Security Manager
	4.2.5. Monitoring resources

	4.3 Experiment Definition
	4.3.1. TOSCA-Metadata
	4.3.2. Definitions
	4.3.3. Files

	5 Conclusion
	Bibliography
	List of Acronyms and Abbreviations

