

SoftFIRE
Software Defined Networks and Network Function

Virtualization Testbed within FIRE+

Grant Agreement Nº 687860

Handbook: programming and using
the SoftFIRE middleware

Version:

Due Date:

Delivery Date:

Type:

Dissemination Level:

Lead partner:

Authors:

Internal reviewers:

1.0.

November 3rd, 2017

November 3rd, 2017

Report (R)

PU

TUB

All Partners (See List of Contributors below)

Roberto Minerva (EIT), Giuseppe Carella (TUB)

Disclaimer
This document contains material, which is the copyright of certain SoftFIRE consortium parties,
and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a license from
the proprietor of that information.

Neither the SoftFIRE consortium as a whole, nor a certain part of the SoftFIRE consortium,
warrant that the information contained in this document is capable of use, nor that use of the
information is free from risk, accepting no liability for loss or damage suffered by any person
using this information.

{ƻŦǘCLw9 Ƙŀǎ ǊŜŎŜƛǾŜŘ ŦǳƴŘƛƴƎ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ
Horizon 2020 research and innovation programme under Grant

Agreement no. 687860.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 3 of 73

Version Control:

Version Date Author !ǳǘƘƻǊΩǎ hǊƎŀƴƛȊŀǘƛƻƴ Changes

0.9 31.10.2017 Giuseppe Carella TUB Generate final version
of deliverable D2.4

1.0 03.11.2017 Roberto Minerva EIT Digital Adaptation to become
a Handbook

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 4 of 73

Contributors:

Contributor Partner

Lorenzo Tomasini TUB

Giuseppe Carella TUB

Bjoern Riemer FOKUS

Roberto Minerva EIT

Thomas Briedigkeit FOKUS

Massimiliano Romano ADS

George Kamel UoS

Serdar Vural UoS

Marco Rossi Ericsson

Tiziano Lazzeri Ericsson

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 5 of 73

Executive Summary

The SoftFIRE project goal is to connect together different testbeds under the standard de facto
technologies in the field of Network Function Virtualization (NFV) and Software Defined
Networks (SDN), providing to experimenters an easy access based on common federated APIs. In
order to achieve this goal, it has been decided to develop, improve and combine multiple
software stacks.
In particular, SoftFIRE aims at (i) integrating and extending different open source technologies in
order to provide a comprehensive reference software middleware for federating heterogeneous
individual testbeds, (ii) providing a live federated infrastructure based on these technologies
developed and integrated, and ease the possibility to running different experiments on the
federated platform.
For these reasons, this deliverable first provides a description of the SoftFIRE middleware main
functions and their design, and second it shows how the experimenters can interact with the
running infrastructure. Considering that the SoftFIRE middleware will continuously evolve
beyond the current version proposed in this document, a live version of the documentation has
been offered at the URL: http://docs.softfire.eu/.

This document (wholly based on Deliverable D2.4 ς άSoftFIRE (v3) usage manual for
NFV/SDN/MEC and 5G experimentersέ) provides a complete description of the new SoftFIRE
middleware that has been developed in order to overcome some issues in using older tools of
the FIRE community. The SoftFIRE project initially adopted FIRE interfaces (i.e. SFA) based on the
FITeagle toolkit. In fact, SoftFIRE project, starting from the second open call, has undertaken a
new approach. After the first open call, based on the feedbacks received from the
experimenters, the SoftFIRE team decided to move towards standard NFV/SDN interfaces (i.e.
TOSCA) in order to simplify the way experimenters, interact with the platform. This document
describes the middleware developed according to the newer technologies and developments
related to the evolution and standardization of NFV/SDN. Some details about the migration from
SFA to TOSCA are explained in section 2.1.
This document is particularly relevant for participants to both, SƻŦǘCLw9Ωǎ ǘƘƛǊŘ hǇŜƴ /ŀƭƭ ŀƴŘ to
the SoftFIRE Challenge.

http://docs.softfire.eu/

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 6 of 73

Table of Contents

Executive Summary .. 5

Table of Contents ... 6

List of Figures ... 8

1 Introduction ... 9

2 SoftFIRE Middleware architecture... 10
2.1 From SFA to TOSCA-based experimentation as a service .. 10
2.2 SoftFIRE Middleware .. 11
2.3 Functional architecture ... 11

2.3.1. Experiment Manager ... 13
2.3.2. NFV Manager ... 14
2.3.3. SDN Manager ... 14
2.3.4. Monitoring Manager .. 17
2.3.5. Security Manager ... 19
2.3.6. Physical Device Manager ... 23

2.4 The SoftFIRE SDN components .. 28
2.5 How to extend the platform .. 30
2.6 How to install the Middleware .. 33

2.6.1. Prerequisites .. 33
2.6.2. Installation ... 34

2.7 Deploy the SoftFIRE Middleware using docker compose .. 35
2.7.1. Prerequisites .. 35
2.7.2. Docker Compose content .. 35
2.7.3. Get the docker compose folder ... 35
2.7.4. Configuration ... 36
2.7.5. Deploy .. 38

2.8 Integration tests ... 38

3 Experiment Lifecycle ... 40
3.1 Get Started ... 40
3.2 Experiment Definition ... 42

3.2.1. Files .. 43
3.2.2. Metadata.yaml ... 43
3.2.3. TOSCA.meta ... 43

3.3 Resource definitions ... 43
3.3.1. NfvResource node type ... 43
3.3.2. SdnResource node type ... 44
3.3.3. MonitoringResource .. 44
3.3.4. SecurityResource ... 44
3.3.5. PhysicalResource ... 45

4 Examples and Tutorials ... 46
4.1 NFV Resources .. 46

4.1.1. iPerf tutorial ... 46
4.1.2. Custom VNF tutorial .. 47

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 7 of 73

4.1.3. How to write an Open Baton Network Service .. 48
4.2 Security Resources .. 50

4.2.1. Example 1 ... 51
4.2.2. Example 2 ... 51
4.2.3. Example 3 ... 52

4.3 Monitoring Resources ... 52
4.3.1. Zabbix agent example .. 53

4.4 SDN Resources.. 54
4.4.1. OpenSDNcore port mirror Example ... 54
4.4.2. OpenDayLight SDN usage .. 57

5 Conclusions .. 62

References ... 63

6 List of Acronyms and Abbreviations .. 65

A. SoftFIRE node templates ... 67

B. iPerf experiment.yaml ... 69

C. Custom experiment.yaml ... 70

D. Custom-iperf.yaml .. 71

E. Section 4.1.2 scripts ... 73

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 8 of 73

List of Figures

Figure 1. SoftFIRE Middleware Architecture ... 12

Figure 2. Experimenter Logical Mapping... 13

Figure 3. SDN Manager Lifecycle events ... 16

Figure 4: Zabbix Monitoring .. 17

Figure 5: Zabbix login page .. 18

Figure 6: Zabbix Dashboard ... 19

Figure 7. Message Flows for UE Reservation Engine Procedures ... 25

Figure 8. SoftFIRE SDN Infratructure ... 29

Figure 9. SoftFIRE external module sequence diagram .. 32

Figure 10. The SoftFIRE Portal ... 40

Figure 11. SoftFIRE Experiment Manager dashboard ... 41

Figure 12. Experiment Manager Overview page ... 42

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 9 of 73

1 Introduction

The meaning of this document is to provide, as the title states, the experimenters with a usage
manual that explains how to interact with the federated testbed infrastructure and in the end
also with their experiments. The experimenters should use this document as guideline, not
only for running their experiments but also for accessing the platform and understanding how
to design the experiment on top of this federated infrastructure, result of the combination of
multiple technologies such as NFV/SDN. Thus, this document acquires an important role for
experimenters and it should be constantly consulted by them while running their experiments,
ŦǊƻƳ ǘƘŜ ōŜƎƛƴƴƛƴƎ ǘƻ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ŜȄǇŜǊƛƳŜƴǘŜǊǎΩ ǇǊƻƧŜŎǘǎΦ

This document (fully based on D2.4 ς άSoftFIRE (v3) usage manual for NFV/SDN/MEC and 5G
experimentersέύ provides a complete description of the new SoftFIRE middleware that has
been developed in order to overcome some issues in using older tools of the FIRE community.
The SoftFIRE project initially adopted FIRE interfaces (i.e. SFA) based on the FITeagle toolkit.
This middleware is developed according to the newer technologies and developments related
to the evolution and standardization of NFV/SDN. In fact, SoftFIRE project, starting from the
second open call, has undertaken a new approach. After the first open call, based on the
feedbacks received from the experimenters, the SoftFIRE team decided to move towards
standard NFV/SDN interfaces (i.e. TOSCA) in order to simplify the way experimenters, interact
with the platform. This document describes the middleware is developed according to the
newer technologies and developments related to the evolution and standardization of
NFV/SDN. Some details about the migration from SFA to TOSCA are explained in section 2.1.

During the course of the project, the spread of knowledge about the platform has been a
constant goal of the SoftFIRE team. The experience has thought that if experimenters have a
good basic know-how of the platform, they can readily start working on the platform. In order
to share the knowledge of the platform, other initiatives have been conducted like tutorials
and open days. The interested reader can have a look to the project website: www.softfire.eu
for extending his/her understanding of the platform. However, this document is a consolidated
basis on top of which to build experimentations and projects using the SoftFIRE federated
testbed.

The intended readers are experimenters and users of the SoftFIRE Federated Platform. It is
suggested to read it carefully before starting any experimentation. It could be convenient to
consider to install local instances of the SoftFIRE Middleware in order to experiment locally
before deploying on the real platform. Some hints are provided in docs.softfire.eu and in
particular in http://docs.softfire.eu/install-softfire-middleware/.

This document is particularly relevant for participants to both, {ƻŦǘCLw9Ωǎ ǘƘƛǊŘ hǇŜƴ /ŀƭƭ ŀƴŘ ǘƻ
the SoftFIRE Challenge.

http://www.softfire.eu/
http://docs.softfire.eu/install-softfire-middleware/

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 10 of 73

2 SoftFIRE Middleware architecture

The SoftFIRE Middleware is the central software component of the SoftFIRE federation. It
exposes a REST API that can be consumed either via a CLI or a dashboard. The experimenter is
supposed to use the dashboard for running its experiments on demand on the SoftFIRE
platform. The ƳƛŘŘƭŜǿŀǊŜΩǎ southbound interface is directed towards the available testbeds of
Deutsche Telekom, Fraunhofer FOKUS, Ericsson, the University of Surrey and Assembly Data
System S.p.A, managed by individual OpenStack controllers and exposing their functions
through remote APIs.

2.1 From SFA to TOSCA-based experimentation as a service

The Slice-based Federation Architecture (SFA) 2.0 high level interface specification [1] draft
was published in July 2010, before the advent and consolidation of current successful
technologies such as Network Function Virtualization and Software Defined Networking. As
ŘŜŦƛƴŜŘ ƛƴ ǘƘŜ ŘǊŀŦǘΣ ŀ άǊŜǎƻǳǊŎŜ όw{ǇŜŎύ ŘŜǎŎǊƛōŜǎ ŀ ŎƻƳǇƻƴŜƴǘ ƛƴ ǘŜǊƳǎ ƻŦ ǘƘŜ ǊŜǎƻǳǊŎŜǎ ƛǘ
ǇƻǎǎŜǎǎŜǎ ŀƴŘ ŎƻƴǎǘǊŀƛƴǘǎ ŀƴŘ ŘŜǇŜƴŘŜƴŎƛŜǎ ƻƴ ǘƘŜ ŀƭƭƻŎŀǘƛƻƴ ƻŦ ǘƘƻǎŜ ǊŜǎƻǳǊŎŜǎέ ŀƴŘ ǘƘŜ
lifecycle is defined elsewhere.

In previous projects, i.e. FED4FIRE, the resource definition was done in different steps: the
RSpec defined the actual resource to be used and the physical location of it while the
άŀǳǘƻƳŀǘŜŘέ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘŜ ŜȄǇŜǊƛƳŜƴǘ ƛǎ ŘŜŦƛƴŜŘ ǘƘǊƻǳƎƘ ŀƴ h95[script, executed via
OMF.

This example shows that the concept of lifecycle of the experiment has gained a more complex
definition. Nowadays, the genre of resources could widely vary from each other. SFA was
designed for mainly provisioning compute resources (physical or virtual) to the experimenter.
The experimenter was then in charge of handling the lifecycle of the actual experiment, via
SSH or in some cases, via OEDL script, if the platform was providing OMF support.

SoftFIRE, aware of the lessons learned from the past, adapted its approach to the new
technical requirements coming from the new generation of experimenters, maintaining
implemented the FIRE functional requirements that are the concrete definition of a FIRE based
project.

The recent evolution in the technology state of the art brought the Experimenters to include in
their experiments and to require from the used platform some key NFV/SDN functionalities.
The SoftFIRE platform has the intend to meet these requirements, while keeping on
provisioning the FIRE required features.

The OASIS industry group defined in November 2013 a standard called Topology and
Orchestration Specification for Cloud Applications (TOSCA) that aims to provide an efficient
and precise tool able to model the cloud applications and associated IT services having a
particular focus on telecom ƻǇŜǊŀǘƻǊǎΩ requirements. This industry related standard is suitable
for modelling NFV and SDN applications (described in addition in the TOSCA Simple Profile for
Network Functions Virtualization (NFV) Version 1.0 specification draft) and it has been chosen
by the SoftFIRE consortium to be the reference modelling language for defining Experiments
(Topology Template) as a set of different kinds of resources (Node Template) strictly formalized
by the SoftFIRE Node Type definition.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 11 of 73

As a matter of fact, TOSCA excellently adapts to experiment definition purposes, maintaining
the new NFV/SDN requirements met, keeping abstract the experiment configuration and
making the definition highly portable.

2.2 SoftFIRE Middleware

The SoftFIRE Middleware exposes a northbound API towards the ǇƭŀǘŦƻǊƳΩǎ users. This API is
exposed by the Experiment Manager (EM), the central component in the SoftFIRE Middleware.
The {ƻŦǘCLw9 aƛŘŘƭŜǿŀǊŜΩǎ northbound API consumes files following the TOSCA format which
has been employed in this context for defining ǘƘŜ ǳǎŜǊΩǎ ŜȄǇŜǊƛƳŜƴǘǎ templates. Since TOSCA
aims to be capable of modelling cloud applications and is focused on support the requirements
of cloud applications operators, it is well suited for the needs of defining SoftFIRE experiments.
In addition, the northbound API, namely the Experimenter API, are invoked directly from a
Dashboard, reducing the complexity for the Experimenters to interact with the platform for
deploying their experiments. Nevertheless, the dashboard consumes the REST APIs exposed by
the EM component, thus experimenters have the freedom to use them directly in order to
operate their experiments in a programmable way.

2.3 Functional architecture

The SoftFIRE Middleware is based on a microservice-oriented architecture where the EM plays
the central role dispatching incoming requests and events to several managers in charge of
handling different types of resources (see Figure 1).

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 12 of 73

Figure 1. SoftFIRE Middleware Architecture

In particular, the current version of SoftFIRE comprises the following managers:

¶ SDN Manager: manages SDN resources

¶ Security Manager: for the Security resources

¶ NFV Manager: manages NFV resources integrating external NFV frameworks into the

SoftFIRE middleware

¶ Monitoring Manager: provides experimenter monitoring resource access

¶ Physical Device Manager: handles the access to the physical resources

The main component of the middleware is the EM. It is responsible for distributing operations
ƻŦ ŀƴ ŜȄǇŜǊƛƳŜƴǘΩǎ ŘŜǇƭƻȅƳŜƴǘ ǘƻ ǘƘŜ ǊŜǎǇƻƴǎƛōƭŜ ƳŀƴŀƎŜǊ ŀƴŘ keeping the overall status of
the experiment. Other managers register to the EM, so that they are known and so that the
EM is able to send to them requests required for an experiment and to get status information
about the resources they are charge of.

The internal communication between the resource managers and the EM is realized using the
gRPC [2] protocol.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 13 of 73

2.3.1. Experiment Manager

The EM provides different features and operations starting from resource management to user
management. In the following sections are presented those features in details.

2.3.1.1. User Authentication and Authorization

The EM uses Cork [3] as library in order to handle the user authentication and authorization on
the northbound API.

The Experiment Manager exposes a dashboard for the users, which directly invokes the REST
API. Depending on the type of user (admin, portal or experimenter) he can access different
parts of the dashboard. Among other things, admin users have access to the creation and
deletion of users (as shown in section 2.3.1.2) and has an overview of the registered users and
managers. Experimenter users can only see the experimenter site where they have the
possibility to reserve resources by uploading experiments and to deploy and remove them.

¢ƘŜ ŘŀǎƘōƻŀǊŘ ǎŜƴŘǎ ǊŜǉǳŜǎǘǎ ǘƻ ǘƘŜ 9aΩǎ w9{¢ !tL, which exposes functions for all of the
previously mentioned use cases.

2.3.1.2. Experiment isolation on sub-components

In addition to the user authentication and authorization from the northbound perspective, the
EM is in charge of preparing an environment for the experimenter also on the sub-
components, in this case Open Baton and OpenStack. Thus, when a user creation is invoked,
the EM prepares with the help of the sub managers the required logical tenants in the sub-
components in order to logically isolate each experimenter workflow. This, it creates projects
at the infrastructure level, and generates project/users inside sub-components. For instance, it
requests to the Open Baton framework, through the NFV Manager, to create project and user,
and it uploads the correct Virtual Infrastructure Manager (VIM) instances to it. Hence an
experimenter is identified in Figure 2:

Figure 2. Experimenter Logical Mapping

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 14 of 73

The process of creating an experimenter environment is done automatically as soon as the
experimenter gains access to the platform through the public portal.

2.3.1.3. Resource discovery

The EM provides to the Experimenter a list of available resources offered as a service. It
gathers this list from the individual resource managers. Each resource is defined with:

¶ an id as unique identifier

¶ a cardinality that defines the number of instance of this resource that can be deployed

¶ a testbed that indicates the in which testbed this resource can be deployed

¶ a description of the resource

2.3.1.4. Resource reservation

The EM is in charge of calculating the availability of the resources based on a reservation. As
will be further explained in Section 3.2, while booking a resource is also mandatory to define a
start and end date. In this way, the EM is able to calculate the resource available in a precise
moment.

2.3.1.5. Resource provisioning

The EM receives the request of provisioning a resource and transmits to the correct sub
ƳŀƴŀƎŜǊ ǘƘŜ άǇǊƻǾƛŘŜψǊŜǎƻǳǊŎŜέ message and returns the result to the experimenter.

2.3.2. NFV Manager

The NFV Manager takes care of handling the experiƳŜƴǘΩǎ bC± ǊŜǎƻǳǊŎŜǎΦ Lǘ ŎƻƳƳǳƴƛŎŀǘŜǎ
ǿƛǘƘ hǇŜƴ .ŀǘƻƴΩǎ Network Function Virtualization Orchestrator (NFVO) using its REST API. In
case of an experiment deployment it uploads a Network Service Descriptor (NSD) in TOSCA
format to the NFVO and triggers the deployment of a Network Service Record (NSR). When the
experiment is deleted it removes the NSR and NSD from the NFVO. The NFV Manager sends
ǘƘŜ b{wΩǎ ǎǘŀǘǳǎ ǇŜǊƛƻŘƛŎŀƭƭȅ to the EM.

Furthermore, the NFV Manager is involved in the creation and removal of SoftFIRE users. For
this it interfaces the OpenStack testbeds. In the process of user creation, it creates a new
OpenStack user and project and a new Open Baton user and project. When removing a
SoftFIRE user, it removes also the Open Baton and Open Stack users and projects. It also makes
sure that there are no leftovers in Open Stack after deleting the user and project.

The NFV Manager provides two NFV resources to the experimenters, which they can use out of
the box. One is a VNF for deploying an iPerf server and client in two virtual machines and the
other one is the Open IMS Core which is an Open Source implementation of IMS Call Session
Control Functions (CSCFs) and a lightweight Home Subscriber Server (HSS), which together
form the core elements of all IMS/NGN architectures as specified today within 3GPP, 3GPP2,
ETSI TISPAN and the PacketCable initiative. Besides the two provided Network Services (NS)
the experimenters can use their own CSAR files for describing the NS they want to deploy.

2.3.3. SDN Manager

The SDN Manager is in charge of the SDN functions provided by individual Testbeds. It
communicates with the specific SDN proxy instance on each testbed using a REST API.

It keeps track of the API endpoints towards the SDN proxy services that are used to filter
requests from experimenters to enable multi tenancy that is by default not provided by the
used SDN controllers. The REST communication between the SDN manager and the individual

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 15 of 73

SDN proxy services is authorized by a secret that needs to be passed as a HTTP header field
with every request. The URL endpoint used for REST communication between manager and
proxy is statically stored inside the configuration file of the SDN manager.

The SDN manager is involved in the following Experiment Lifecycle phases:

1. User Creation

2. Resource Discovery

3. Validation

4. Provision

5. Release

The following Figure 3 shows the individual steps of the lifecycle events in details.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 16 of 73

Figure 3. SDN Manager Lifecycle events

2.3.3.1. User Creation

This Event is triggered by the Experiment Manager when the user is initially created inside the
SoftFIRE middleware. The SDN manager receives details about the user and the created
OpenStack tenants of the user, which are used to prepare the SDN-proxy for OpenSDNcore in
the FOKUS testbed.

2.3.3.2. Resource Discovery

Upon list resources event the SDN manager returns a list of available SDN endpoints to the
Experiment Manager.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 17 of 73

2.3.3.3. Resource Validation

The validation event is used by the SDN manager to check if the requested Resources are
available at the moment.

2.3.3.4. Resource Provision

The resource Provision event triggers communication between the SDN manager end the
actual SDN-proxy responsible for the selected testbed. Each experiment is assigned a unique
token that is send together with the tenant-id to the SDN-proxy. The proxy assigns a number of
flow tables to those experiments and returns them. The list of allowed flow tables are returned
together with the experiment token and the API endpoint URL to the Experiment manager.

2.3.3.5. Resource Release

The release Resource event is used by the SDN manager to notify the associated SDN-proxy to
shut down the experiment and to delete the assigned flow tables.

2.3.4. Monitoring Manager

The SoftFIRE platform offers a monitoring system as a service in order to monitor
performances of virtualized resources and applications deployed via the EM.

The Monitoring manager is a software component that provides the capability to request to
the SoftFIRE platform, the installation of a pre-configured Zabbix Server VM inside a specific
ŜȄǇŜǊƛƳŜƴǘŜǊǎΩ ǇǊƻƧŜŎǘ.

Furthermore, in coordination with the other components of the SoftFIRE middleware, it also
installs a Zabbix Agent on each VM requested to be instantiated by a particular experimenter.

2.3.4.1. The Zabbix monitoring system

The Zabbix monitoring system, Figure 4 is an enterprise open source software providing a
monitoring solution for network functions and applications.

It is designed to monitor and track the status of various network services, servers, and others
network hardware.

Figure 4: Zabbix Monitoring

In SoftFIRE, Zabbix uses MySQL as a backend database to store data. Its backend is written in C
and the web frontend is written in PHP. Zabbix offers several monitoring options:

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 18 of 73

¶ Simple checks can verify the availability and responsiveness of standard services such

as SMTP or HTTP without installing any software on the monitored host.

¶ A Zabbix agent can also be installed on UNIX and Windows hosts to monitor statistics

such as CPU load, network utilization, disk space, etc.

¶ As an alternative to installing an agent on hosts, Zabbix includes support for

monitoring via SNMP, TCP and ICMP checks, as well as over IPMI, JMX, SSH, Telnet and

using custom parameters. Zabbix supports a variety of near-real-time notification

mechanisms, including XMPP.

Once instantiated on your Tenant environment you can access to Zabbix server GUI opening
the following url http://ip -of-the-vm/zabbix.

To access the Zabbix server, Figure 5, you need to use the following default credentials:

User name :Admin

Passwrod :zabbix

Figure 5: Zabbix login page

You can also access the Zabbix server via SSH, using the following credentials: appliance/zabbix

As administrator, you have full rights on Zabbix Server to create/modify your own monitoring
items and personalized views, Figure 6.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 19 of 73

Figure 6: Zabbix Dashboard

2.3.5. Security Manager

The Security Manager inside the SoftFIRE Middleware makes available to the Experimenters a
set of security related functionalities that they might decide to include and use within their
activities on the SoftFIRE platform.

Here is the list of the available features for every type of Resource:

1. The Experimenters can deploy a Security Resource;

2. The Experimenters can statically configure the Security Resource by means of its

descriptor;

3. The Experimenter can statically configure some features on her Resource;

4. The Experimenters can dynamically configure the Resource once it has been deployed;

Features not available for Resource pfsense:

1. The Experimenters can enable logs collection from their Resource;

2. The Experimenters can see Resources logs in a web dashboard;

3. The Experimenters can perform searches among the Resources logs in a web

dashboard;

4. The Experimenters can see statistics related to the Resources logs in a web dashboard

A Security Resource is a commonly used security agent that the Experimenters can include in
their experiment.

They can access and configure it through a static initial configuration, included in the TOSCA
description of the Experiment, or, once deployed, through the interfaces that expose its main
services.

These interfaces can include SSH, a dashboard, or ReST APIs.

Depending on the type of Resource, Experimenters can also ask the Security Resource to send
its log messages to a remote log collector, which makes them available in a simple web page
reserved to them.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 20 of 73

The Experimenters could easily access it through its web browser and check the behaviour of
all their security agents, and to see some related statistics.

The Experimenters can get the Security Resource in two different formats:

¶ As an agent directly installed in the VM that they want to monitor. The system will

provide them a script that the Experimenters have just to run inside the VM. It will be

already configured as required in the TOSCA description of the resource. The output of

the script will provide to the Experimenters information on how to access the

deployed resource (URLs, etc.)

¶ As a standalone VM. The Security Resource will be deployed directly by the Security

Manager in the testbed chosen by the Experimenter. The Security Manager will take

care of the initial configuration of the resource. The Experimenters have to set up on

their own the redirection of the network traffic that they want to control through the

Security Resource VM (by means of OS configuration, or SDN capabilities provided by

the SoftFIRE platform).

The Security Manager provides three types of resources:

ω Firewall

ω Suricata

ω pfsense

This sequence diagram specifies the operations performed by the Security Manager based on
the inputs received by the Experimenter.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 21 of 73

2.3.5.1. Firewall Resource

A firewall is a network security system that monitors and controls the incoming and outgoing
network traffic based on predetermined rules.
The available firewall resource is built upon Ubuntu UFW (Uncomplicated FireWall), to which a

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 22 of 73

control system, based on a ReST interface, has been added. The firewall agent is available for
Ubuntu OS only.
The rules that can be defined on this type of firewall are stateless (they do not maintain
information about the context). It works as a packet filter, which looks at network addresses,
ports and protocols.

Services specifically available for the firewall Resource are:

1. The Experimenter can statically define a list of allowed IP addresses (or CIDR masks)
2. The Experimenter can statically define a list of denied IP addresses (or CIDR masks)
3. The Experimenter can statically define the default behaviour of the firewall
4. The Experimenter can get the status of the firewall
5. The Experimenter can get the rules installed on the firewall
6. The Experimenter can dynamically add a rule to the firewall
7. The Experimenter can dynamically update a rule on the firewall
8. The Experimenter can dynamically remove a rule from the firewall

Further information and the UFW documentation can be found at
https://help.ubuntu.com/community/UFW.

2.3.5.2. Suricata Resource

Suricata is a free and open source network threat detection engine.

The Suricata engine is capable of real time intrusion detection (IDS), inline intrusion prevention
(IPS), network security monitoring (NSM) and offline pcap processing.

Suricata inspects the network traffic using a powerful and extensive rules and signature
language, and has powerful Lua scripting support for detection of complex threats.

The Suricata project and code is owned and supported by the Open Information Security
Foundation (OISF), a non-ǇǊƻŦƛǘ ŦƻǳƴŘŀǘƛƻƴ ŎƻƳƳƛǘǘŜŘ ǘƻ ŜƴǎǳǊƛƴƎ {ǳǊƛŎŀǘŀΩǎ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ
sustained success as an open source project.

Suricata is provided in SoftFIRE on top of an Ubuntu VM, and the Suricata Resource offers
following Services:

1. The Experimenters can statically define a list of rules that will be inspected by Suricata
2. The Experimenters can view Suricata log messages on a dedicated dashboard
3. The Experimenters can exploit all Suricata features.

The official documentation about Suricata can be found at
http://suricata.readt hedocs.io/en/latest/ .

2.3.5.3. PfSense Resource

PfSense is an open source firewall/router computer software distribution based on FreeBSD.

It can be installed on either physical or virtual machines, and it offers a high-level configuration
interface, by means of a web dashboard, as well as a low-level interface by means of SSH.

https://help.ubuntu.com/community/UFW
http://suricata.readthedocs.io/en/latest/

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 23 of 73

Furthermore, pfSense supports the installation of third-party packages, that can be included.
Exploiting this mechanism, the resource made
available for SoftFIRE experimenters provides a ReST interface through which it is possible to
configure and modify every property of the pfSense.
The packet used to provide the ReST interface is the FauxAPI extension (please refer to the
official repository
for more details about).

Moreover, the credentials of the Experimenter are pushed in the Virtual Machine, so that user
only is able to access each of the available interfaces.

This is a list of the main features offered by pfSense OS:
ω Firewall with stateful packet inspection

¶ IPv4 and IPv6 support

¶ Traffic Shaping

¶ NAT

¶ Load Balancing

¶ VPN - IPsec, OpenVPN, L2TP

¶ Dynamic DNS

¶ DHCP Server and Relay

More detailed information about pfSense can be found on the official website and
documentation .

2.3.6. Physical Device Manager

The Physical Device Manager is in charge of handling resources of type PhysicalResource. Since
the physical resource is an LTE cell located at Fraunhofer FOKUS and cannot be accessed
ǊŜƳƻǘŜƭȅΣ ǘƘŜ tƘȅǎƛŎŀƭ wŜǎƻǳǊŎŜ aŀƴŀƎŜǊΩǎ ǘŀǎƪǎ ŀǊŜ ƭƛƳƛǘŜŘΦ It only takes care of reserving and
configuring the physical resource so that experimenters can be assigned exclusively to a
certain experiment per time.

2.3.6.1. User Equipment (UE) Reservation Engine

The UE Reservation Engine takes care of the allocation of User Equipment resources to
experimenters, providing them with full remote access to mobile UEs. It receives instructions
from the Physical Device Manager over a REST API, in order to:

1. create users,

2. allocate a UE for a user, and

3. terminate all UE allocations of the user.

Based on these instructions received from the Physical Device Manager, the UE Reservation
Engine communicates with the TeamViewer [6] UE application through its own REST API to
create a user within the SoftFIRE corporate TeamViewer account, and respectively share and
unshare UEs with it.

A UE that is shared with a user can be accessed remotely through the online TeamViewer
console of that user. Once connected to a UE, the user can control it as if he/she physically
accessing the UE, and therefore can install and control applications on the UE.

https://github.com/ndejong/pfsense_fauxapi
https://www.pfsense.org/
https://doc.pfsense.org/

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 24 of 73

2.3.6.1.1. Message Flows for Procedures of UE Reservation Engine

The three procedures, i.e. user creation, UE allocation, and termination of UE allocations, are
performed via message exchanges between the Experiment Manager and the UE Reservation
Engine. Figure 7 below illustrates these message flows. The Engine implements a REST API to
create users, reserve a UE, and terminate all reservations. As can be seen in the figure, the
Physical Resource Manager acts as a message router, relaying messages between the
Reservation Engine and the Experiment Manager. At the background in a UE, the TeamViewer
app receives its supported API calls from the UE Reservation Engine. This transparent
operation between the User and TeamViewer provides the User with remote control of the
app, and hence the UE itself.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 25 of 73

Figure 7. Message Flows for UE Reservation Engine Procedures

2.3.6.1.2. API Calls to the UE Reservation Engine

All API calls that are used to interact with the UE Reservation Engine accept and return JSON
data, and require a Bearer Authorization token in the message header.

2.3.6.1.2.1 Create User

This API call is used to create a TeamViewer user account under the SoftFIRE corporate
account. This is performed as part of a userΩǎ registration to the Experiment Manager. The
following are the parameters to this API call:

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 26 of 73

¶ email ς the e-mail address with which to create a TeamViewer account under the

SoftFIRE corporate TeamViewer account. As such, the e-mail address that is provided

must ideally be one that it not already registered with TeamViewer, and one for which

the User is willing to surrender all TeamViewer account privileges to SoftFIRE. If the

provided e-mail address is already associated to a TeamViewer account, then an error

message will be returned to indicate that the account is already registered, and that

the User needs to manually join the SoftFIRE account using the returned URL (see

below).

¶ password ς the password to use with the TeamViewer account. This must meet the

following TeamViewer-imposed requirements:

o At least six characters long

o Must contain at least two of the following:

Á Lower case letter

Á Upper case letter

Á Special character

Á Number

The API call returns the following values:

¶ email ς the email that was used to register by the User, confirming the account has

been successfully created

¶ password ς the password that was used by the User to register

¶ url ς ǘƘŜ ¦w[ǳǎŜŘ ǘƻ ŀŎŎŜǎǎ ǘƘŜ ¦ǎŜǊΩǎ ¢ŜŀƳ±ƛŜǿŜǊ ŎƻƴǎƻƭŜ

The API call may return the following error messages:

¶ no_access_token (error_code: 0)

άAccess token is missing.έ

¶ invalid_token (error_code: 1)

άThe access token provided is invalid.έ

¶ database_connection_error (error_code: 2)

άCould not connect to ǘƘŜ ¦9 ƳŀƴŀƎŜǊ ŘŀǘŀōŀǎŜΦέ ς Please note that UE manager in

this message refers to the UE Reservation Engine.

¶ insecure_password (error_code: 6)

άThe password provided is insecure. Your password must be at least six characters long

and must meet at least two of the following criteria: (1) Lower case letter; (2) Upper

case letter; (3) Special character; (4ύ bǳƳōŜǊΦέ

¶ email_already_in_use (error_code: 4)

άThis e-mail address already has a TeamViewer account associated with it. Please go to

https://login.teamviewer.com/cmd/joincompany and join the SoftFIRE TeamViewer

account (g.kamel@surrey.ac.uk) or use another e-mail address which does not have a

TeamViewer accƻǳƴǘ ŀƭǊŜŀŘȅ ŀǎǎƻŎƛŀǘŜŘ ǿƛǘƘ ƛǘΦέ

¶ user_already_registered (error_code: 5)

άUser is already registered and set up.έ

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 27 of 73

2.3.6.1.2.2 Reserve UE

This API call is used to reserve a single UE for the User. It accepts the following parameters.
Please note that the User must provide their correct e-mail and password pair, originally used
to create their user account.

¶ email ς the e-mail address used in user creation by the User

¶ password ς the password used in user creation by the User for the purpose of

password-protecting access to the UE

The API call returns the following values:

¶ email ς the email of the User to which a UE has now been allocated to. This is a

confirmation to the User to indicate that the UE has been reserved for a particular

User identified by this email address

¶ assigned_devices ς the aggregate number of UEs associated to the User. This is a

counter that indicates how many UEs the User has associated so far.

The API call may return the following error messages:

¶ no_access_token (error_code: 0)

άAccess token is missing.έ

¶ invalid_token (error_code: 1)

άThe access token provided is invalid.έ

¶ database_connection_error (error_code: 2)

άCould not connect to UE manager database.έ ς Please note that UE manager in this

message refers to the UE Reservation Engine.

¶ no_free_ue (error_code: 7)

άThere are no more UEs available, as they are all in use by other experimenters.έΦ

PlŜŀǎŜ ƴƻǘŜ ǘƘŀǘ άŜȄǇŜǊƛƳŜƴǘŜǊέ ǊŜŦŜǊǎ ǘƻ άǳǎŜǊέ ƛƴ ǘƘƛǎ ŎƻƴǘŜȄǘΦ

¶ invalid_user (error_code: 3)

άUser does not exist. Please first create a user account.έ

2.3.6.1.2.3 Terminate UE reservations

This API call is used to terminate the any UE reservations a User has. It has the following
parameters:

¶ email ς the e-mail address used in user creation by the User,

¶ password ς the password used in user creation by the User for the purpose of

password-protecting access to the UE.

Please note that the User must provide their correct e-mail and password pair, originally used

to create their user account.

The API call returns the following values:

¶ email ς the email of the User to which a UE was allocated. This is a confirmation to the

User to indicate that the UE has been reserved for a particular User identified by this

email address,

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 28 of 73

¶ assigned_devices ς the aggregate number of UEs associated to the User. This is a

counter that indicates how many UEs the User has associated so far.

The API call may return the following error messages:

¶ no_access_token (error_code: 0)

άAccess token is missing.έ

¶ invalid_token (error_code: 1)

άThe access token provided is invalid.έ

¶ database_connection_error (error_code: 2)

άCould not ŎƻƴƴŜŎǘ ǘƻ ¦9 ƳŀƴŀƎŜǊ ŘŀǘŀōŀǎŜΦέ ς Please note that UE manager in this

message refers to the UE Reservation Engine.

¶ invalid_user (error_code: 3)

άUser does not exist. Please first create a user account.έ

2.4 The SoftFIRE SDN components

The SoftFIRE platform was extended for supporting SDN functionalities in some of the
individual testbeds, in particular for providing experimenters the possibility to interact on
demand with the SDN controller and apply different traffic paths inside their virtual networks.
Hence on these testbeds the networking is not implemented by the OpenStack Neutron
module, but leverages on a SDN backend which provides more advanced functionalities using
the standard OpenFlow protocol. These SDN backends allow flow manipulation directly on the
network level.

However, the used SDN controller implementations do not provide user separation based on a
per tenant schema. This would lead to the ability for each to interfere with the network
configuration of other Experiments that are run at the same time on the same Testbed. In
order to overcome these issues, the SoftFIRE project introduced a controller specific sdn-proxy
which is put in between the SDN controller and the experimenter. Figure 8 shows the relation
between Experimenter, SDN Manager, sdn-proxy and SDN controller. The separation between
experiments is realized by the assignment of user-specific flow tables that are inserted into the
normal packet flow of the SDN switch. The sdn-proxy analyses the controller specific protocol
and makes sure that write or modification operations are only done in the flow tables that
where assigned to the experiment.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 29 of 73

Figure 8. SoftFIRE SDN Infratructure

The SoftFIRE platform provides two types of SDN controllers and switches:

¶ OpenDaylight / openVswitch

¶ OpenSDNCore controller and switch

OpenDaylight is one of the most known open source SDN controller, with an extensible
architecture based on OSGI plugins. It has been integrated with OpenStack Neutron service
which enables control and configuration of the attached Open Virtual Switch (OVS). This
replaces the L3 Agent typically found in OpenStack installations. ODL provides a REST API in
order to allow the experiments to program flows of OVS switches. Using Openflow the
experiments can implement advanced networking functionalities like Load Balancing,
Firewalling or Traffic Mirroring.

The experimenters have not direct access to the Opendaylight controller, but their request
must be done towards another component called ODLProxy. ODLProxy function is to filter the
requests in order to provide experimenter/tenant isolation assigning some tables to the
experimenters. Further information can be found at paragraph 4.4.

OpenSDNcore is the highly flexible SDN controller and OpenFlow switch developed by
Fraunhofer FOKUS with the targeting the 5G Mobile Network. The OpenSDNcore controller is
integrated into the Neutron component of OpenStack to replace the OpenVSwitch and the L3
Agent that is typically handling the Network services in an OpenStack installation.
OpenSDNcore provides a JSON-RPC API towards the experimenter to control the operation of
the attached switches. Using those APIs, OpenFlow rules can be loaded into the processing
pipeline of the switches. The API can be used to implement advanced Features like Service

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 30 of 73

Function Chain (SFC) or GPRS Tunneling Protocol (GTP) tunnels handling right into the switches
used by OpenStack.

The User separation based on dedicated flow tables is already supported by the OpenSDNCore
OpenStack agent implementation. The missing user separation on the JSON-RPC API was
added by the SDN-proxy-osdnc [7] implementation of the SoftFIRE project.

2.5 How to extend the platform

The SoftFIRE middleware can be easily extended and customized for any particular kind of
scenario. This can be done by adding an external Open Baton service, for instance an auto-
scaling engine, a fault management system or a monitoring plugin. Furthermore, another
Virtual Network Function Manager (VNFM) could be registered to the NFVO.

All these extensions can be applied without the need to change the SoftFIRE middleware,
resulting in an easy and effortless extension process. Old experiments are therefore still
supported and the experimenters can make use of the extensions by adjusting their
experiments if they want to.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 31 of 73

This is possible using the Open Baton NFVO SDK that allows the service to register for some
events and execute reactions. An example in Java (also available in Go and Python) on how to
register for REST events follows:

package org.openbaton.event.module.main;

import org.openbaton.catalogue.nfvo.Action;

import org.openbaton.catalogue.nfvo.EndpointType;

import org.openbaton.catalogue.nfvo.EventEndpoint;

import org.openbaton.sdk.NFVORequestor;

import org.openbaton.sdk.api.exception.SDKException;

import org.openbaton.sdk.api.rest.EventAgent;

public class EventModule {

 /* This is the Username used to connect to t he NFVO */

 private static String obUsername = "admin";

 /* This is the Password used to connect to the NFVO */

 private static String obPassword = "openbaton";

 /* This is the Project ID used to connect to the NFVO */

 private static String obProject Id = "cef9283a - de4b - 47e3 - a221 - d1192ce9e5bd";

 /* This must be true if during the NFVO installation the ssl was enabled */

 private static boolean isSslEnabled = false;

 /* This is the NFVO Ip */

 private static String obNfvoIp = "127.0.0.1";

 /* This is the NFVO port */

 private static String obNfvoPort = "8080";

 public static void main(String[] args) {

 NFVORequestor requestor = new NFVORequestor(obUsername, obPassword,

obProjectId, isSslEnabled, obNfvoIp, obNfvoPort, "1");

 /* Now the Event Agent needs to be retrieved */

 EventAgent eventAgent = requestor.getEventAgent();

 /* Define your endpoint */

 EventEndpoint eventEndpoint = new EventEndpoint();

 eventEndpoint.setName("MyEvent");

 eventEndpoint.setDescription("My event endpoint");

 /*Register to all the event describing the correct instantiation of NSR*/

 eventEndpoint.setEvent(Action.INSTANTIATE_FINISH);

 eventEndpoint.setType(EndpointType.REST);

 eventEndpoint.setEndpo int("http://<SOFTFIREVPNIP:4554>/event/module");

 /* Now register the endpoint */

 try {

 eventAgent.create(eventEndpoint);

 } catch (SDKException e) {

 e.printStackTrace();

 System.err.println("Got an exception :(");

 }

 }

}

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 32 of 73

For making use of the NFVO SDK, it is possible to add the dependency using gradle [8] or
maven [9] as follows:

The following sequence diagram is shown in order to understand the lifecycle of an
experimenter custom service.

Figure 9. SoftFIRE external module sequence diagram

As we can see from the sequence diagram in Figure 9, the external service must register for
specific events to the NFVO. The credentials necessary to use the NFVO API are specific for
Experimenter and each experimenter cannot retrieve or modify any other resources of
another experimenter. The event to register depends from the application logic and goals, but
there are events for any modification of a specific NSR or VNFR status.

<dependency>

 <groupId>org.openbaton</groupId>

 <artifactId>sdk</artifactId>

 <version>3.2.0</version>

</dependency>

compile 'org.openbaton:sdk:3.2.0'

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 33 of 73

In the sequence diagram above, it is shown the logic of an external service making use of the
Open Baton APIs for triggering scaling operations towards the VNFR part of the NFV Resource
Manager as soon as the NSR is deployed. When the NSR goes in ACTIVE state, the NFVO sends
an event to the service registered, containing the NSR deployed. The external service can,
using the NFVORequestor, invoke the NFVO API for:

1. retrieving the NSR

2. choose which VNFR Ą VDU to scale

3. Invoke the NFVORequestor scale out method passing the ids chosen in the previous

step

4. wait for the action to finish

5. when the NSR is deleted, the external service can stop

2.6 How to install the Middleware

The SoftFIRE Middleware already provides a set of bash functions1 that will help you in case
you want to install your private SoftFIRE Middleware. There are two options:

¶ codeinstall: install the code of all the managers and the python package of the SDK.

This procedure is meant to be for development purposes

¶ install: install the code of all the managers and the python package of the SDK. This

procedure is meant to be for production purposes

In case you want just to play around with the Experiment Manger, you can use the docker
installation.

2.6.1. Prerequisites

Both procedures need to have git installed:

and to run:

for instance, in your home directory. After the clone, you should have a folder called bootstrap
containing:

1 The SoftFIRE Middleware is OS independent, however the bootstrap procedure assumes that the
underlying OS is Debian based.

sudo apt install git

git clone https://github.com/softfire-eu/bootstrap.git

bootstrap

ǃƧƧ LICENSE

ǃƧƧ README.md

ǃƧƧ bootstrap.sh

ƻƧƧ generate_cork_files.py

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 34 of 73

2.6.2. Installation

Go into the directory and run the bootstrap commands:

2.6.2.1. Source Code installation

For installing the source code just run:

2.6.2.2. Release installation

For installing the python packages just run:

2.6.2.3. Installation Procedure

After running these commands the script will:

1. install the debian packages required by the middleware

2. creating the configuration folders

3. downloading the source code or installing python packages of all the managers

(depending on what installation procedure you chose)

4. downloading configuration files

Start the Middleware¶
If everything went well, you are able to start the SoftFIRE Middleware by running

in case you installed via source code, or

$-> cd bootstrap

$-> ./boostrap.sh

./bootstrap.sh <action>

actions: [install|update|clean|start|stop|codestart|codeupdate|codeinstall|purge]

install: install the SoftFIRE Middleware python packages

update: update the SoftFIRE Middleware python packages

clean: clean the SoftFIRE Middleware

start: start the SoftFIRE Middleware via python packages

stop: stop the SoftFIRE Middleware

codeinstall: install the SoftFIRE Middleware source code

codeupdate: update the SoftFIRE Middleware source code

codestart: start the SoftFIRE Middleware via source code

purge: completely remove the SoftFIRE Middleware

./boostrap.sh codeinstall

./boostrap.sh install

./boostrap.sh codestart

./ boostrap.sh start

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 35 of 73

in case you installed via python packages.

In both cases, a tmux session will run in background and you can check the output by attaching
to it:

2.7 Deploy the SoftFIRE Middleware using docker compose

2.7.1. Prerequisites

You need to install:

¶ docker (that includes also docker-compose)

¶ git

For having a real example (fully reproduce the SoftFIRE Middleware), you will also need:

¶ an OpenStack instance where executing deployment

2.7.2. Docker Compose content

This deployment will be composed by these containers:

¶ Experiment Manager

¶ Nfv Manager

¶ Sdn Manager

¶ Security Manager

¶ Monitoring Manager

¶ Physical Device Manager

¶ Open Baton Standalone

Note: the Nfv Manager and Monitoring Manager containers must be able to reach the
OpenStack endpoints.

2.7.3. Get the docker compose folder

Just clone the repository containing the docker compose file and the configurations:

after this command, you can go in the folder and check that everything is there:

Before running docker compose we need to correctly configure the Middleware.

and you should have something like this:

tmux a

git clone https://github.com/softfire - eu/docker - softfire.git

cd docker - softfire

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 36 of 73

2.7.4. Configuration

Each manager has its own configuration. Some are very simple some are more complex. we
will have a look into all of them.

2.7.4.1. NfvManager Configuration

In the nfv-man folder

.

ḿḣḣ LICENSE

ḿḣḣ docker - compose.yaml

ḿḣḣ ex - man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ experiment - manager.ini

 ḿḣḣ softfire - ca.p12

 ḿḣḣ softfire - key

 ḿḣḣ softfire - key.pem.pub

 ḿḣḣ template_openvpn.tpl

 ḿḣḣ users

 views

ḿḣḣ mon- man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ monitoring - manager.ini

 openstack - credentials.json

ḿḣḣ nfv - man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ available - nsds.json

 ḿḣḣ nfv - manager.ini

 ḿ openstack - credentials.json

 ḿḣḣ packages

 ḿḣḣ softfire - key

 ḿḣḣ softfire - key.pem.pub

 start.sh

ḿḣḣ pd- man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ physical - device - manager.ini

 physical - resources.json

ḿḣḣ sdn - man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ sdn - manager.ini

 sdn - resources.json

 sec - man

 ḿḣḣ Dockerfile

 softfire

 ḿḣḣ security - manager

 ḷḣḣ security - manager.ini

cd nfv - man

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 37 of 73

we need to configure the nfv manager itself by changing the nfv-manager.ini file inside the
softfire dir.

Here you have to do some modifications:

the Open Baton endpoint should be already correctly configured to point to the openbaton
container DNS entry.

Then we need to set the OpenStack endpoint

modify the file in order to match your openstack endpoint.

Note: At the moment only v3 is supported

Note: please let as key fokus since it is needed to be one of the SoftFIRE testbed names.

2.7.4.2. Monitoring Manager Configuration

As per the Nfv Manager, we need to configure the Monitoring Manager, so just copy the file of
the nfv manager

...

[nfvo]

ip = openbaton

username = admin

password = openbaton

port = 8080

https = False

...

vim softfire/openstack-credentials.json

{

 "fokus" : {

 "username" : "admin" ,

 "password" : "password" ,

 "auth_url" : "http://openstack:5000/v3" ,

 "ext_net_name" : "whatever" ,

 "admin_tenant_name" : "admin" ,

 "allocate - fip" : 0,

 "api_version" : 3,

 "admin_project_id" : "ea45bf4462864832a75ece4c4cc33c11" ,

 "user_domain_name" : "default"

 }

}

vim softfire/nfv-manager.ini

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 38 of 73

Then you also have to configure some options in the .ini file:

in particular, the openstack related configurations must be changed based on your particular
installation:

2.7.5. Deploy

Now it is time to deploy:

The Experiment Manager is available at http://localhost:5180/. You can access the admin
portal by using admin/admin.

The next step is to create an experimenter. By creating a user, a long chain of calls will be
performed. In particular, the Nfv Manager will create a user in OpenStack and then upload the
right vim to Open Baton.

If it goes well, then you are able to logout and then log in with the create username and
password and you should be able to see all the available resources.

2.8 Integration tests

Additional work has been realized for providing a Continuous Integration / Continuous
Development (CI/CD) system allowing executing integration tests on top of the federated
testbed. This CI/CD system allows testing realistic use cases of all the components of the
SoftFIRE Middleware on an automated way. Jenkins [10] is used for the automation of the
tests. Every night a Jenkins job runs a comprehensive test. The test is a separate project which
exists only for the purpose of testing the SoftFIRE middleware. The test executes a
comprehensive scenario on different testbeds utilizing every type of resource in an
experiment.

These are the steps of the integration test:

1. Creation of a new experimenter

2. Upload of an experiment making use of all the available resources

3. Deployment of the experiment

cp nfv - man/softfire/openstack - credentials.json mon -

man/softfire/ openstack - credentials.json

vim mon - man/softfire/monitoring - manager.ini

[opens tack - params]

image_name =Zabbix_Server_image

flavour =m1.small

security_group =default
instance_name =Zabbix_Server_Instance

docker - compose up -- build - d -- remove - orphans

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 39 of 73

4. Validation of the deployed experiment

5. Removal of the experiment

6. Removal of the experimenter

Steps one and six are optional. The number of experimenters can be increased. This means
that each step is executed multiple times concurrently for several experimenters. In this case,
not all the resources can be used by each experimenter since the physical resource can only be
used by one user at a time.

The validation of the deployed experiment is done by validating specific indicators for each
resource.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 40 of 73

3 Experiment Lifecycle

In this section, are explained in details all the steps that an Experimenter shall follow in order
to access the platform, define an experiment and deploy/provision it. The information
provided below are also available as part of the official documentation online:
http://docs.softfire.eu/getting-started/

3.1 Get Started

The first step to be executed by an experimenter who wants to access the SoftFIRE
infrastructure is to register at the Web Portal, Figure 10, available at:
https://portal.softfire.eu/login/.

Figure 10. The SoftFIRE Portal

From its personal page it will be possible to download the OpenVPN certificate configuration
file that will allow entering the SoftFIRE VPN. The second step required is to install the
OpenVPN client and start it using the certificate configuration file previously downloaded.

Once the SoftFIRE VPN is active it is possible to reach the Experimenter Manager dashboard at:
http://experiment.vpn.softfire.eu:5080/login. Figure 11 shows the page:

http://docs.softfire.eu/getting-started/
https://portal.softfire.eu/login/
http://experiment.vpn.softfire.eu:5080/login

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 41 of 73

Figure 11. SoftFIRE Experiment Manager dashboard

After providing the username and password, the password is the same used in the SoftFIRE
Web Portal and the username is your name+surname. The Signup is currently disabled If the
login works correctly you will be redirected on the Experimenter page that looks like the
following Figure 12.

Handbook: programming and using the SoftFIRE middleware

Date: 03.11.2017 Handbook: programming and using the SoftFIRE middleware Page 42 of 73

Figure 12. Experiment Manager Overview page

By reloading the page, the experimenter can also refresh the list of available resources. These
resources have a detailed description and an id. The id has to be used while defining the
experiment, for defining which resources should be reserved and provisioned.

As already mentioned in the previous chapter, the EM uses TOSCA as main format for the
experiment definition, thus, for reserving resources, the experimenter must define an
experiment description and package it as a TOSCA CSAR archive. This archive should be this
archive file in the input box of the Reserve resources section. Once the experiment is reserved
the experimenter will be able to see it under the Defined experiment section.

Once uploaded the experiment CSAR file, the experimenter will have a list of chosen resources
in the bottom table. The value of the resources will be empty until deployed. By clicking on the
"Deploy" button, it can trigger the deployment in the SoftFIRE middleware. The status will
change to deploy and the content of the deployed resource will appear in the value column.

By clicking on the "Delete" button, the experimenter can trigger the removal of all the
resources created. It is necessary to reserve the experiment again in case of re-deployment.

3.2 Experiment Definition

Experiments are the main entity used for communication between the experimenters and the
SoftFIRE platform. With the help of experiment files, the experimenters can describe what
they want to achieve and how their deployment should look like. Essentially, an experiment is
ƳŀŘŜ ƻŦ ǘƘŜ ŜȄǇŜǊƛƳŜƴǘΩǎ ŘŜǎŎǊƛǇǘƛƻƴ ŀƴŘ ǘƘŜ {ƻŦǘCLw9 ǊŜǎƻǳǊŎŜǎ ǳǎŜŘ ƛƴ ǘƘŜ ŜȄǇŜǊƛƳŜƴǘΦ
Those resources can either be included directly inside the experiment file or stored by the

